一動(dòng)圓與圓外切,與圓內(nèi)切.

(I)求動(dòng)圓圓心M的軌跡方程.(II)試探究圓心M的軌跡上是否存在點(diǎn),使直線的斜率?若存在,請(qǐng)指出共有幾個(gè)這樣的點(diǎn)?并說(shuō)明理由(不必具體求出這些點(diǎn)的坐標(biāo))

 

【答案】

(I)  (II) 圓心M的軌跡上存在四個(gè)點(diǎn),使直線的斜率.

 【解析】解:(1)設(shè)動(dòng)圓圓心為,半徑為

由題意,得,                        (1分)

, 由橢圓定義知在以為焦點(diǎn)的橢圓上,    (3分)

,.                (5分)

動(dòng)圓圓心M的軌跡方程為.          (6分)

(II) 由(I)知?jiǎng)訄A圓心M的軌跡是橢圓,它的兩個(gè)焦點(diǎn)坐標(biāo)分別為 (7分)                                         

設(shè)是橢圓上的點(diǎn),由      (9分)

,這是實(shí)軸在軸,頂點(diǎn)是橢圓的兩個(gè)焦點(diǎn)的雙曲線,它與橢圓的交點(diǎn)即為點(diǎn)P。由于雙曲線的兩個(gè)頂點(diǎn)在橢圓內(nèi),根據(jù)橢圓和雙曲線的對(duì)稱性可知,它們必有四個(gè)交點(diǎn).

即圓心M的軌跡上存在四個(gè)點(diǎn),使直線的斜率.    (12分)

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年廣東省惠州市高三第四次調(diào)研(一模)文科數(shù)學(xué)試卷(解析版) 題型:解答題

一動(dòng)圓與圓外切,與圓內(nèi)切.

(1)求動(dòng)圓圓心的軌跡的方程;

(2)設(shè)過(guò)圓心的直線與軌跡相交于兩點(diǎn),請(qǐng)問(wèn)為圓的圓心)的內(nèi)切圓的面積是否存在最大值?若存在,求出這個(gè)最大值及直線的方程,若不存在,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

一動(dòng)圓與圓數(shù)學(xué)公式外切,與圓數(shù)學(xué)公式內(nèi)切.
(I)求動(dòng)圓圓心M的軌跡L的方程.
(Ⅱ)設(shè)過(guò)圓心O1的直線l:x=my+1與軌跡L相交于A、B兩點(diǎn),請(qǐng)問(wèn)△ABO2(O2為圓O2的圓心)的內(nèi)切圓N的面積是否存在最大值?若存在,求出這個(gè)最大值及直線l的方程,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年廣東省汕頭市潮師高級(jí)中學(xué)高一(下)第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題

一動(dòng)圓與圓外切,與圓內(nèi)切.
(I)求動(dòng)圓圓心M的軌跡L的方程.
(Ⅱ)設(shè)過(guò)圓心O1的直線l:x=my+1與軌跡L相交于A、B兩點(diǎn),請(qǐng)問(wèn)△ABO2(O2為圓O2的圓心)的內(nèi)切圓N的面積是否存在最大值?若存在,求出這個(gè)最大值及直線l的方程,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年湖南省株洲二中高三(下)第十一次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

一動(dòng)圓與圓外切,與圓內(nèi)切.
(I)求動(dòng)圓圓心M的軌跡L的方程.
(Ⅱ)設(shè)過(guò)圓心O1的直線l:x=my+1與軌跡L相交于A、B兩點(diǎn),請(qǐng)問(wèn)△ABO2(O2為圓O2的圓心)的內(nèi)切圓N的面積是否存在最大值?若存在,求出這個(gè)最大值及直線l的方程,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案