如圖所示,在直三棱柱ABC-A1B1C1中,AB=A1B1,AC1⊥平面A1BD,D為AC的中點(diǎn).(Ⅰ)求證:B1C∥平面A1BD;
(Ⅱ)求證:B1C1⊥平面ABB1A1;

【答案】分析:(I)由中位線定理得到B1C∥MD,再由線面平行的判定理理得到B1C∥平面A1BD;
(Ⅱ)先證明A1B⊥B1C1,BB1⊥B1C1求再由線面垂直的判定理得到B1C1⊥平面ABB1A1
解答:(Ⅰ)證明:如圖,連接AB1與A1B相交于M,則M為A1B的中點(diǎn),
連接MD,D又為AC的中點(diǎn),
∴B1C∥MD.
又B1C不包含于平面A1BD,MD?平面A1BD,B1C∥平面A1BD
∴B1C∥平面A1BD.(5分)
(Ⅱ)∵AB=B1B∴四邊形ABB1A1為正方形
∴A1B⊥AB1
又∵AC1⊥面A1BD,∴AC1⊥A1B,
∴A1B⊥面AB1C1,
∴A1B⊥B1C1,
又在直棱柱ABC-A1B1C1中BB1⊥B1C1,
∴B1C1⊥平面ABB1A1(9分)
點(diǎn)評:本題主要考查線面平行和線面垂直的判定定理以及三角形中位線定理.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在直三棱柱ABC-A1B1C1中,AC⊥BC,AA1=AC=BC=2,D、E、F分別是AB、AA1、CC1的中點(diǎn),P是CD上的點(diǎn).
(1)求直線PE與平面ABC所成角的正切值的最大值;
(2)求證:直線PE∥平面A1BF;
(3)求直線PE與平面A1BF的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在直三棱柱ABC-A′B′C′中,∠BAC=90°,AB=BB′=1,直線B′C與平面ABC成30°角.
(1)求證:A′B⊥面AB′C;
(2)求二面角B-B′C-A的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在直三棱柱ABC-A1B1C1中,底面是∠ABC為直角的等腰直角三角形,AC=2a,BB1=3a,D是A1C1的中點(diǎn),點(diǎn)F在線段AA1上,當(dāng)AF=
a或2a
a或2a
時(shí),CF⊥平面B1DF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在直三棱柱ABC-A1B1C1中,AB=BB1,AC1⊥平面A1BD,D為AC的中點(diǎn).
(Ⅰ)求證:B1C1⊥平面ABB1A1;
(Ⅱ)設(shè)E是CC1的中點(diǎn),試求出A1E與平面A1BD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在直三棱柱ABC-A1B1C1中,AB=BB1=BC,AC1⊥平面A1BD,D為AC的中點(diǎn).
(1)求證:B1C∥平面A1BD;
(2)求證:B1C1⊥平面ABB1A1;
(3)在CC1上是否存在一點(diǎn)E,使得∠BA1E=45°,若存在,試確定E的位置,并判斷平面A1BD與平面BDE是否垂直?若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案