8.不等式組$\left\{\begin{array}{l}{x≥0}\\{x+3y≥4}\\{2x+y≤3}\end{array}\right.$所表示的平面區(qū)域的面積為$\frac{5}{6}$.

分析 利用二元一次不等式組的定義作出對應的圖象,找出對應的平面區(qū)域,結(jié)合相應的面積公式進行求解即可.

解答 解:作出不等式組對應的平面區(qū)域如圖:
則由$\left\{\begin{array}{l}{x=0}\\{x+3y=4}\end{array}\right.$得$\left\{\begin{array}{l}{x=0}\\{y=\frac{4}{3}}\end{array}\right.$,即A(0,$\frac{4}{3}$),
由$\left\{\begin{array}{l}{x=0}\\{2x+y=3}\end{array}\right.$得$\left\{\begin{array}{l}{x=0}\\{y=3}\end{array}\right.$,即B(0,3),
由$\left\{\begin{array}{l}{x+3y=4}\\{2x+y=3}\end{array}\right.$得$\left\{\begin{array}{l}{x=1}\\{y=1}\end{array}\right.$,即C(1,1),
則三角形的面積S=$\frac{1}{2}$|AB|•h=$\frac{1}{2}×$(3-$\frac{4}{3}$)×1=$\frac{1}{2}×\frac{5}{3}$=$\frac{5}{6}$,
故答案為:$\frac{5}{6}$

點評 本題主要考查一元二次不等式組表示平面區(qū)域,利用數(shù)形結(jié)合是解決本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

18.崇慶中學高三年級某班班班主任近期對班上每位同學的成績作相關分析時,得到周同學的某些成績數(shù)據(jù)如下:
第一次考試第二次考試第三次考試第四次考試
數(shù)學總分118119121122
總分年級排名133127121119
(1)求總分年級名次關于數(shù)學總分的線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$(必要時用分數(shù)表示)
(2)若周同學想在下次的測試時考入年級前100名,預測該同學下次測試的數(shù)學成績至少應考多少分(取整數(shù),可四舍五入).
(參考公式$\left\{\begin{array}{l}{\stackrel{∧}=\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}}\\{\stackrel{∧}{a}=\overline{y}-\stackrel{∧}\overline{x}}\end{array}\right.$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.某車間將10名技工平均分為甲,乙兩組加工某種零件,在單位時間內(nèi)每個技工加工零件若干,其中合格零件的個數(shù)如表:
1號2號3號4號5號
甲組457910
乙組56789
(1)分別求出甲,乙兩組技工在單位時間內(nèi)完成合格零件的平均數(shù)及方差,并由此判斷哪組工人的技術(shù)水平更好;
(2)質(zhì)監(jiān)部門從該車間甲,乙兩組中各隨機抽取1名技工,對其加工的零件進行檢測,若兩人完成合格零件個數(shù)之和超過12件,則稱該車間“質(zhì)量合格”,否則“不合格”.求該車間“質(zhì)量不合格”的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知集合M={x|-2x+1>0},N={x|x<a},若M⊆N,則a的范圍是( 。
A.$a>\frac{1}{2}$B.$a<\frac{1}{2}$C.$a≤\frac{1}{2}$D.$a≥\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)f(x)=loga(1-x)+loga(3+x)(0<a<1)
(1)求函數(shù)f(x)的定義域;
(2)若函數(shù)f(x)的最小值為-4,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知等比數(shù)列{an}中,a2=2,a4=8,數(shù)列{bn}滿足:b1=-1,bn+1=bn+(2n-1).
(1)求數(shù)列{an}和數(shù)列{bn}的通項公式;
(2)若cn=$\frac{{{a_n}{b_n}}}{n}$,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知傾斜角為45°的直線l過橢圓$\frac{{x}^{2}}{4}$+y2=1的右焦點,則l被橢圓所截的弦長是( 。
A.$\frac{2}{5}$B.$\frac{4}{5}$C.$\frac{6}{5}$D.$\frac{8}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.用二分法求函數(shù)f(x)=3x-x-4的零點時,其參考數(shù)據(jù)如下
f(1.6000)=0.200f(1.5875)=0.133f(1.5750)=0.067
f(1.5625)=0.003f(1.5562)=-0.029f(1.5500)=-0.060
據(jù)此數(shù)據(jù),可得f(x)=3x-x-4的一個零點的近似值(精確到0.01)為( 。
A.1.55B.1.56C.1.57D.1.58

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.長方形ABCD中,AB=2,BC=1,F(xiàn)是線段DC上一動點,且0<FC<1.將△AFD沿AF折起,使平面AFD⊥平面ABC,在平面ABD內(nèi)作DK⊥AB于K,設AK=t,則t的值可能為( 。
A.$\frac{4}{3}$B.$\frac{3}{4}$C.$\frac{1}{3}$D.$\frac{1}{4}$

查看答案和解析>>

同步練習冊答案