【題目】我國(guó)著名數(shù)學(xué)家華羅庚先生曾說:數(shù)缺形時(shí)少直觀,形缺數(shù)時(shí)難入微,數(shù)形結(jié)合百般好,隔裂分家萬事休.在數(shù)學(xué)的學(xué)習(xí)和研究中,常用函數(shù)的圖象研究函數(shù)的性質(zhì),也常用函數(shù)的解析式來琢磨函數(shù)的圖象特征.如函數(shù)的圖象大致為( )
A.B.
C.D.
【答案】B
【解析】
根據(jù)題意,設(shè)f(x),分析函數(shù)的奇偶性可以排除A、D,結(jié)合復(fù)合函數(shù)單調(diào)性的判斷方法分析可得函數(shù)y=f(x)為增函數(shù),排除C;即可得答案.
根據(jù)題意,設(shè)f(x),有f(﹣x)=f(x),即函數(shù)f(x)為偶函數(shù),排除A、D;
設(shè)t=cosx,則y=﹣2t2+t+1,
在區(qū)間[0,]上,t=cosx為減函數(shù),且0≤t≤1,
y=﹣2t2+t+1,其對(duì)稱軸為t,開口向下,在區(qū)間(﹣∞,)上為增函數(shù),(,+∞)上為減函數(shù),
在區(qū)間(0,arccos)上,t=cosx為減函數(shù),此時(shí)t<1,函數(shù)y=﹣2t2+t+1為減函數(shù),
故函數(shù)y=f(x)為增函數(shù),排除C;
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)點(diǎn)是拋物線的焦點(diǎn),、是上兩點(diǎn).若,且線段的中點(diǎn)到軸的距離等于.
(1)求的值;
(2)設(shè)直線與交于、兩點(diǎn)且在軸的截距為負(fù),過作的垂線,垂足為,若.
(i)證明:直線恒過定點(diǎn),并求出該定點(diǎn)的坐標(biāo);
(ii)求點(diǎn)的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于定義域?yàn)?/span>的函數(shù),如果存在區(qū)間滿足是上的單調(diào)函數(shù),且在區(qū)間上的值域也為,則稱函數(shù)為區(qū)間上的“保值函數(shù)”,為“保值區(qū)間”.根據(jù)此定義給出下列命題:①函數(shù)是上的“保值函數(shù)”;②若函數(shù)是上的“保值函數(shù)”,則;③對(duì)于函數(shù)存在區(qū)間,且,使函數(shù)為上的“保值函數(shù)”.其中所有真命題的序號(hào)為( )
A.②B.③C.①③D.②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國(guó)著名數(shù)學(xué)家華羅庚先生曾說:數(shù)缺形時(shí)少直觀,形缺數(shù)時(shí)難入微,數(shù)形結(jié)合百般好,隔裂分家萬事休.在數(shù)學(xué)的學(xué)習(xí)和研究中,常用函數(shù)的圖象研究函數(shù)的性質(zhì),也常用函數(shù)的解析式來琢磨函數(shù)的圖象特征.如函數(shù)的圖象大致為( )
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:(a>b>0)過點(diǎn)E(,1),其左、右頂點(diǎn)分別為A,B,左、右焦點(diǎn)為F1,F2,其中F1(,0).
(1)求橢圓C的方程:
(2)設(shè)M(x0,y0)為橢圓C上異于A,B兩點(diǎn)的任意一點(diǎn),MN⊥AB于點(diǎn)N,直線l:x0x+2y0y﹣4=0,設(shè)過點(diǎn)A與x軸垂直的直線與直線l交于點(diǎn)P,證明:直線BP經(jīng)過線段MN的中點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:(a>b>0)過點(diǎn)E(,1),其左、右頂點(diǎn)分別為A,B,左、右焦點(diǎn)為F1,F2,其中F1(,0).
(1)求橢圓C的方程:
(2)設(shè)M(x0,y0)為橢圓C上異于A,B兩點(diǎn)的任意一點(diǎn),MN⊥AB于點(diǎn)N,直線l:x0x+2y0y﹣4=0,設(shè)過點(diǎn)A與x軸垂直的直線與直線l交于點(diǎn)P,證明:直線BP經(jīng)過線段MN的中點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論的單調(diào)性;
(2若函數(shù)有兩個(gè)零點(diǎn)分別記為.
①求的取值范圍;
②求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,,,,,平面平面.
(1)求證:平面;
(2)求證:平面;
(3)在棱上是否存在一點(diǎn)E,使得二面角的大小為?若存在,求出的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線:的焦點(diǎn)為,拋物線上的點(diǎn)到準(zhǔn)線的最小距離為2.
(1)求拋物線的方程;
(2)若過點(diǎn)作互相垂直的兩條直線,,與拋物線交于,兩點(diǎn),與拋物線交于,兩點(diǎn),,分別為弦,的中點(diǎn),求的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com