一個(gè)籃球運(yùn)動(dòng)員投籃一次得3分的概率為a,得2分的概率為b,不得分的概率為c[a、b、c∈(0,1)],已知他投籃一次得分的數(shù)學(xué)期望為1(不計(jì)其它得分情況),則ab的最大值為


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式
B
分析:由數(shù)學(xué)期望的計(jì)算公式可得3a+2b+0×c=1,再利用均值不等式求解即可.
解答:由已知3a+2b+0×c=1,即3a+2b=1,
∴ab=•3a•2b≤2=•(2=,
當(dāng)且僅當(dāng)3a=2b=,即a=,b=時(shí)取等號(hào).
故選B.
點(diǎn)評(píng):本題綜合考查了基本不等式和數(shù)學(xué)期望的有關(guān)知識(shí),考查了學(xué)生分析問(wèn)題和解決問(wèn)題的實(shí)際綜合應(yīng)用能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)籃球運(yùn)動(dòng)員投籃一次得3分的概率為a,得2分的概率為b,不得分的概率為c[a、b、c∈(0,1)],已知他投籃一次得分的數(shù)學(xué)期望為1(不計(jì)其它得分情況),則ab的最大值為( 。
A、
1
48
B、
1
24
C、
1
12
D、
1
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)將三顆骰子各擲一次,設(shè)事件A=“三個(gè)點(diǎn)數(shù)都不相同”,B=“至少出現(xiàn)一個(gè)6點(diǎn)”,則概率P(
A
B
)等于
 

(2)一個(gè)籃球運(yùn)動(dòng)員投籃一次得2分的概率為a,得3分的概率為b,不得分的概率為c(a,b,c∈(0,1)),已知他投籃一次得分的期望為2,則
2
a
+
1
3b
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)籃球運(yùn)動(dòng)員投籃一次得3分的概率為a,得2分的概率為b,不得分的概率為c(a、b、c∈(0,1)),已知他投籃一次得分的數(shù)學(xué)期望為2(不計(jì)其它得分情況),則ab的最大值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)籃球運(yùn)動(dòng)員投籃一次得3分的概率為a,得2分的概率為b,得0分的概率為0.5(投籃一次得分只能3分、2分、1分或0分),其中a、b∈(0,1),已知他投籃一次得分的數(shù)學(xué)期望為1,則ab的最大值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)籃球運(yùn)動(dòng)員投籃一次得3分的概率為a,得2分的概率為b,不得分的概率為c(a,b,c∈(0,1))已知他投籃一次得分的期望為2,則
2
a
+
1
3b
的最小值為
16
3
16
3

查看答案和解析>>

同步練習(xí)冊(cè)答案