【題目】為降低空氣污染,提高環(huán)境質(zhì)量,政府決定對汽車尾氣進(jìn)行整治.某廠家生產(chǎn)甲、乙兩種不同型號的汽車尾氣凈化器,為保證凈化器的質(zhì)量,分別從甲、乙兩種型號的凈化器中隨機抽取100件作為樣本進(jìn)行產(chǎn)品性能質(zhì)量評估,評估綜合得分都在區(qū)間.已知評估綜合得分與產(chǎn)品等級如下表:

根據(jù)評估綜合得分,統(tǒng)計整理得到了甲型號的樣本頻數(shù)分布表和乙型號的樣本頻率分布直方圖(圖表如下).

甲型 乙型

(Ⅰ)從廠家生產(chǎn)的乙型凈化器中隨機抽取一件,估計這件產(chǎn)品為二級品的概率;

(Ⅱ)從廠家生產(chǎn)的乙型凈化器中隨機抽取3件,設(shè)隨機變量為其中二級品的個數(shù),求的分布列和數(shù)學(xué)期望;

(Ⅲ)根據(jù)圖表數(shù)據(jù),請自定標(biāo)準(zhǔn),對甲、乙兩種型號汽車尾氣凈化器的優(yōu)劣情況進(jìn)行比較.

【答案】(Ⅰ)0.25;(Ⅱ)詳見解析;(Ⅲ)詳見解析.

【解析】

(Ⅰ)根據(jù)頻率分布直方圖求對應(yīng)區(qū)間概率,即得結(jié)果,(Ⅱ)先確定隨機變量,再分別求對應(yīng)概率,列表的分布列,最后根據(jù)數(shù)學(xué)期望公式得結(jié)果,(Ⅲ)先確定標(biāo)準(zhǔn),如根據(jù)三級品率進(jìn)行比較或根據(jù)一級品率,再根據(jù)概率大小確定優(yōu)劣.

(Ⅰ)設(shè)“從廠家生產(chǎn)的乙型凈化器中隨機抽取一件,這件產(chǎn)品為二級品”為事件

由圖可得

(Ⅱ)的可能取值為

所以的分布列為

0

1

2

3

方法一:

方法二:服從二項分布所以

(Ⅲ)答案不唯一,只要有數(shù)據(jù)支撐,言之有理可得分(下面給出兩種參考答案)

1可根據(jù)三級品率進(jìn)行比較,由圖表可知甲型產(chǎn)品三等品概率為0,乙型三等品概率0.05.所以可以認(rèn)為甲型產(chǎn)品的質(zhì)量更好;

2可根據(jù)一級品率進(jìn)行比較,由圖表可知甲型產(chǎn)品一等品概率為0.6,乙型一等品概率為0.7.所以可以認(rèn)為乙型產(chǎn)品的質(zhì)量更好;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠生產(chǎn)不同規(guī)格的一種產(chǎn)品,根據(jù)檢測標(biāo)準(zhǔn),其合格產(chǎn)品的質(zhì)量與尺寸xmm)之間近似滿足關(guān)系式b、c為大于0的常數(shù)).按照某項指標(biāo)測定,當(dāng)產(chǎn)品質(zhì)量與尺寸的比在區(qū)間內(nèi)時為優(yōu)等品.現(xiàn)隨機抽取6件合格產(chǎn)品,測得數(shù)據(jù)如下:

尺寸xmm

38

48

58

68

78

88

質(zhì)量y (g)

16.8

18.8

20.7

22.4

24

25.5

質(zhì)量與尺寸的比

0.442

0.392

0.357

0.329

0.308

0.290

Ⅰ)現(xiàn)從抽取的6件合格產(chǎn)品中再任選3件,記為取到優(yōu)等品的件數(shù),試求隨機變量的分布列和期望;

Ⅱ)根據(jù)測得數(shù)據(jù)作了初步處理,得相關(guān)統(tǒng)計量的值如下表:

75.3

24.6

18.3

101.4

ⅰ)根據(jù)所給統(tǒng)計量,求y關(guān)于x的回歸方程;

ⅱ)已知優(yōu)等品的收益(單位:千元)與的關(guān)系為,則當(dāng)優(yōu)等品的尺寸x為何值時,收益的預(yù)報值最大?(精確到0.1)

附:對于樣本 ,其回歸直線的斜率和截距的最小二乘估計公式分別為:,,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足:,且an+1n=1,2…)集合M={an|}中的最小元素記為m.

1)若a1=20,寫出ma10的值:

2)若m為偶數(shù),證明:集合M的所有元素都是偶數(shù);

3)證明:當(dāng)且僅當(dāng)時,集合M是有限集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱中,平面側(cè)面,且,

(Ⅰ)求證:;

(Ⅱ)若直線與平面所成角的大小為,求銳二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱ABCA1B1C1中,側(cè)棱垂直于底面,∠ACB90°,ACBCAA1,D是棱AA1的中點.

(1)證明:平面BDC1⊥平面BDC;

(2)平面BDC1分此棱柱為兩部分,求這兩部分體積的比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求曲線處的切線方程;

(Ⅱ)求上的單調(diào)區(qū)間;

(Ⅲ)當(dāng)時,證明:上存在最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知兩定點,點是平面內(nèi)的動點,且,記的軌跡是

(1)求曲線的方程;

(2)過點引直線交曲線兩點,設(shè),點關(guān)于軸的對稱點為,證明直線過定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點,直線,設(shè)圓的半徑為1,圓心在.

1)若圓心也在直線上,過點作圓的切線,求切線的方程;

2)若圓上存在點,使,求圓心的橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓:過點和點.

Ⅰ)求橢圓的方程;

Ⅱ)設(shè)直線與橢圓相交于不同的兩點, ,是否存在實數(shù),使得?若存在,求出實數(shù);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案