【題目】高一年級6個(gè)班級去蘇州、黃山、廈門三個(gè)地方修學(xué)旅行,每個(gè)城市至少有一個(gè)班前去,其中1班和2班不能去同一個(gè)地方,則共有_________種不同分配方法?
【答案】390
【解析】
先將6個(gè)班級分成3組,分,,三大類情況討論,結(jié)合均勻分組、不均勻分組分析即可得到答案..
由題意,可將問題分為三種情況:
(1)當(dāng)時(shí),先將6個(gè)班級分成3組,兩組1個(gè)班,一組4個(gè)班,再分配到三
個(gè)地方研修有種不同分配,其中1、2班取同一地方共種不同分配,
故共有(種);
(2)當(dāng)時(shí),先將6個(gè)班級分成3組,一組1個(gè)班,一組2個(gè)班,一組3個(gè)
班,再分配到三個(gè)地方研修有種不同分配,其中1、2班取同一地方共
種不同分配,故共有(種)
(3)當(dāng)時(shí),先將6個(gè)班級均勻分成3個(gè)組,每組2個(gè)班級,再分配到三個(gè)地
方研修有種不同分配,其中1、2班取同一地方共種不同分配,
故共有(種),
綜上共有(種).
故答案為:390
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)滿足
(1)求函數(shù)的解析式;
(2)令
若函數(shù)在上是單調(diào)函數(shù),求實(shí)數(shù)m的取值范圍;
求函數(shù)在的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,平面,,,,且,,點(diǎn)在線段上.
(1)求證:平面;
(2)若二面角的大小為,試確定點(diǎn)的位置.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
已知函數(shù),其中是常數(shù).
(Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(Ⅱ)若存在實(shí)數(shù),使得關(guān)于的方程在上有兩個(gè)不相等的實(shí)數(shù)根,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
已知函數(shù),其中是常數(shù).
(Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(Ⅱ)若存在實(shí)數(shù),使得關(guān)于的方程在上有兩個(gè)不相等的實(shí)數(shù)根,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), ,其中是自然常數(shù).
(1)判斷函數(shù)在內(nèi)零點(diǎn)的個(gè)數(shù),并說明理由;
(2) , ,使得不等式成立,試求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域?yàn)?/span>的單調(diào)函數(shù)是奇函數(shù),當(dāng)時(shí),.
(1)求的解析式.
(2)若對任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)討論函數(shù)的單調(diào)性;
(2)當(dāng)時(shí),設(shè),,滿足恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,點(diǎn)在橢圓上.
(1)求橢圓的方程;
(2)過橢圓的右焦點(diǎn)作互相垂直的兩條直線、,其中直線交橢圓于兩點(diǎn),直線交直線于點(diǎn),求證:直線平分線段.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com