【題目】A、B兩同學(xué)參加數(shù)學(xué)競賽培訓(xùn),在培訓(xùn)期間,他們參加了8次測驗(yàn),成績(單位:分)記錄如下:

A 71 62 72 76 63 70 85 83

B 73 84 75 73 78 76 85

B同學(xué)的成績不慎被墨跡污染(,分別用mn表示).

1)用莖葉圖表示這兩組數(shù)據(jù),現(xiàn)從AB兩同學(xué)中選派一人去參加數(shù)學(xué)競賽,你認(rèn)為選派誰更好?請說明理由(不用計(jì)算);

2)若B同學(xué)的平均分為78,方差,求mn.

【答案】1B同學(xué),理由見解析;(2m=8,n=0.

【解析】

1)根據(jù)題意作出莖葉圖即可;

2)根據(jù)平均數(shù),方差公式列出方程求解即可.

1A、B兩同學(xué)參加了8次測驗(yàn),成績(單位:分)莖葉圖如下:

由莖葉圖可知,B同學(xué)的平均成績高于A同學(xué)的平均成績,

所以選派B同學(xué)參加數(shù)學(xué)競賽更好.

2)因?yàn)?/span>73+84+75+73+70+m+80+n+76+85)=78,

所以m+n=8,①,

因?yàn)?/span>S2[52+62+32+52+m82+(n+22+22+72]=19,

所以(m82+(n+22=4,②

聯(lián)立①②解得,m=8,n=0.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為坐標(biāo)原點(diǎn),拋物線的焦點(diǎn)坐標(biāo)為,點(diǎn)在該拋物線上且位于軸的兩側(cè),

(Ⅰ)證明:直線過定點(diǎn);

(Ⅱ)以為切點(diǎn)作的切線,設(shè)兩切線的交點(diǎn)為,點(diǎn)為圓上任意一點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線C1a0,b0)的左焦點(diǎn)為F(﹣c0),拋物線y24cx的準(zhǔn)線與雙曲線的一個(gè)交點(diǎn)為P,點(diǎn)M為線段PF的中點(diǎn),且OFM為等腰直角三角形,則雙曲線C的離心率為(

A.B.1C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足:,,現(xiàn)從數(shù)列的前2020項(xiàng)中隨機(jī)抽取1項(xiàng),則該項(xiàng)不能被3整除的概率是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】A、B兩同學(xué)參加數(shù)學(xué)競賽培訓(xùn),在培訓(xùn)期間,他們參加了8次測驗(yàn),成績(單位:分)記錄如下:

A 71 62 72 76 63 70 85 83

B 73 84 75 73 78 76 85

B同學(xué)的成績不慎被墨跡污染(,分別用mn表示).

1)用莖葉圖表示這兩組數(shù)據(jù),現(xiàn)從A、B兩同學(xué)中選派一人去參加數(shù)學(xué)競賽,你認(rèn)為選派誰更好?請說明理由(不用計(jì)算);

2)若B同學(xué)的平均分為78,方差,求mn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在梯形中,,點(diǎn)在線段上,且滿足,將沿翻折,使翻折后的二面角的余弦值為,如圖2

1)求證:

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xoy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線E的極坐標(biāo)方程為,直線l的參數(shù)方程為(t為參數(shù)).點(diǎn)P為曲線E上的動點(diǎn),點(diǎn)Q為線段OP的中點(diǎn).

1)求點(diǎn)Q的軌跡(曲線C)的直角坐標(biāo)方程;

2)若直線l交曲線CAB兩點(diǎn),點(diǎn)恰好為線段AB的三等分點(diǎn),求直線l的普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線交拋物線、兩點(diǎn)(點(diǎn)在點(diǎn)左側(cè)),過線段(兩端點(diǎn)除外)上的任意一點(diǎn)作直線,使得直線與拋物線在點(diǎn)處的切線平行,設(shè)直線與拋物線交于、兩點(diǎn).

1)記直線、的斜率分別為、,證明:;

2)若,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正四棱錐中,是邊長為3的等邊三角形,點(diǎn)M的重心,過點(diǎn)M作與平面PAC垂直的平面,平面與截面PAC交線段的長度為2,則平面與正四棱椎表面交線所圍成的封閉圖形的面積可能為______________.(請將可能的結(jié)果序號填到橫線上)①2;②;③3; ④.

查看答案和解析>>

同步練習(xí)冊答案