.(本小題滿(mǎn)分12分)
已知點(diǎn),一動(dòng)圓過(guò)點(diǎn)且與圓內(nèi)切,
(1)求動(dòng)圓圓心的軌跡的方程;
(2)設(shè)點(diǎn),點(diǎn)為曲線(xiàn)上任一點(diǎn),求點(diǎn)到點(diǎn)距離的最大值;
(3)在的條件下,設(shè)△的面積為(是坐標(biāo)原點(diǎn),是曲線(xiàn)上橫坐標(biāo)為的點(diǎn)),以為邊長(zhǎng)的正方形的面積為.若正數(shù)滿(mǎn)足,問(wèn)是否存在最小值,若存在,請(qǐng)求出此最小值,若不存在,請(qǐng)說(shuō)明理由.
解:(1)設(shè)圓心坐標(biāo)為,則動(dòng)圓的半徑為,
又動(dòng)圓與內(nèi)切,所以有化簡(jiǎn)得
所以動(dòng)圓圓心軌跡C的方程為;……………… 4分
(2)設(shè),則

,令,
∴,當(dāng),即時(shí)上是減函數(shù),
;
當(dāng),即時(shí),上是增函數(shù),在上是減函數(shù),則;
當(dāng),即時(shí),上是增函數(shù),
.
    ………………… 8分
(3)當(dāng)時(shí),,于是,,
若正數(shù)滿(mǎn)足條件,則,即,
,令,設(shè),則,,
于是,
∴當(dāng),即時(shí),,
.∴存在最小值.………… 12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

(本小題滿(mǎn)分12分)
設(shè)點(diǎn)M、N分別是不等邊△ABC的重心與外心,已知,且.
(1)求動(dòng)點(diǎn)C的軌跡E;
(2)若直線(xiàn)與曲線(xiàn)E交于不同的兩點(diǎn)P、Q,且滿(mǎn)足,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)雙曲線(xiàn)的兩個(gè)焦點(diǎn)分別為,離心率為.
(I)求此雙曲線(xiàn)的漸近線(xiàn)的方程;
(II)若分別為上的點(diǎn),且,求線(xiàn)段的中點(diǎn)的軌跡方程,并說(shuō)明軌跡是什么曲線(xiàn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知雙曲線(xiàn)與橢圓共焦點(diǎn),且以為漸近線(xiàn),求雙曲線(xiàn)方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(12分)兩定點(diǎn)的坐標(biāo)分別A(-1,0),B(2,0),動(dòng)點(diǎn)M滿(mǎn)足條件,求動(dòng)點(diǎn)M的軌跡方程并指出軌跡是什么圖形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿(mǎn)分14分)
在平面直角坐標(biāo)系中,設(shè)點(diǎn)(1,0),直線(xiàn):,點(diǎn)在直線(xiàn)上移動(dòng),是線(xiàn)段軸的交點(diǎn), .
(Ⅰ)求動(dòng)點(diǎn)的軌跡的方程;
(Ⅱ)記的軌跡的方程為,過(guò)點(diǎn)作兩條互相垂直的曲線(xiàn)的弦、,設(shè) 的中點(diǎn)分別為.求證:直線(xiàn)必過(guò)定點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,拋物線(xiàn)形拱橋的頂點(diǎn)距水面2米時(shí),測(cè)得拱橋內(nèi)水面寬為12米,當(dāng)水面升高1米后,則拱橋內(nèi)水面的寬度為_(kāi)____米.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題


已知曲線(xiàn)上的動(dòng)點(diǎn)滿(mǎn)足到點(diǎn)的距離比到直線(xiàn)的距離小
(1)求曲線(xiàn)的方程;
(2)動(dòng)點(diǎn)在直線(xiàn)上,過(guò)點(diǎn)分別作曲線(xiàn)的切線(xiàn),切點(diǎn)為
(。┣笞C:直線(xiàn)恒過(guò)一定點(diǎn),并求出該定點(diǎn)的坐標(biāo);
(ⅱ)在直線(xiàn)上是否存在一點(diǎn),使得為等邊三角形(點(diǎn)也在直線(xiàn)上)?若存在,求出點(diǎn)坐標(biāo),若不存在,請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題



(本小題滿(mǎn)分10分)
如圖,在平面直角坐標(biāo)系中,點(diǎn)在第一象限內(nèi),軸于點(diǎn), .
(1)求的長(zhǎng);
(2)記,.(為銳角),求sina,sin的值

查看答案和解析>>

同步練習(xí)冊(cè)答案