精英家教網 > 高中數學 > 題目詳情
設函數f(x)定義在實數集上,f(2-x)=f(x),且當x≥1時,f(x)=lnx,則有(  )
A、f(
1
3
)<f(2)<f(
1
2
)
B、f(
1
2
)<f(2)<f(
1
3
)
C、f(
1
2
)<f(
1
3
)<f(2)
D、f(2)<f(
1
2
)<f(
1
3
)
分析:由f(2-x)=f(x)得到函數的對稱軸為x=1,再由x≥1時,f(x)=lnx得到函數的圖象,從而得到答案.
解答:解:∵f(2-x)=f(x)∴函數的對稱軸為x=1
∵x≥1時,f(x)=lnx∴函數以x=1為對稱軸且左減右增,故當x=1時函數有最小值,離x=1越遠,函數值越大
故選C.
點評:本題考查的是由f(a-x)=f(b+x)求函數的對稱軸的知識與對數函數的圖象.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

15、設函數f(x)定義在R上,且f(x+1)是偶函數,f(x-1)是奇函數,則f(2003)=( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

10、設函數f(x)定義在實數集上,它的圖象關于直線x=1對稱,且當x≥1時,f(x)=3x-1,則f(-2),f(0),f(3)從小到大的順序是
f(0)<f(3)<f(-2)

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)定義在(0,+∞)上,f(1)=0,導函數f′(x)=
1
x
,g(x)=f(x)+f′(x).
(Ⅰ)求g(x)的單調區(qū)間和最小值;
(Ⅱ)討論g(x)與g(
1
x
)
的大小關系;
(Ⅲ)是否存在x0>0,使得|g(x)-g(x0)|<
1
x
對任意x>0成立?若存在,求出x0的取值范圍;若不存在請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)定義在R上,f(0)≠0,且對于任意a,b∈R,都有f(a+b)+f(a-b)=2f(a)f(b).
(1)求證:f(x)為偶函數;
(2)若存在正數m使f(m)=0,求證:f(x)為周期函數.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)定義在R上,對于任意實數m、n,恒有f(m+n)=f(m)?f(n),且當x>0時,0<f(x)<1.
(1)求證:f(0)=1,且當x<0時,f(x)>1;
(2)設集合A={(x,y)|f(x2)?f(y2)>f(1)},B={(x,y)|f(ax-y+2)=1,a∈R},若A∩B=∅,求a的取值范圍.

查看答案和解析>>

同步練習冊答案