解:(Ⅰ)函數(shù)的定義域為(0,+∞),
當(dāng)a=3時,f′(x)=1+
-
=
,
令f′(x)=0,解得x=1或x=2,
當(dāng)0<x<1或x>2時,f′(x)>0,當(dāng)1<x<2時,f′(x)<0,
所以當(dāng)x=1時f(x)取得極大值f(1)=-1,當(dāng)x=2時f(x)取得極小值f(2)=1-3ln2;
(Ⅱ)f′(x)=1+
-
=
,
令g(x)=x
2-ax+2,其判別式△=a
2-8,
①當(dāng)|a|
時,△≤0時,f′(x)≥0,故f(x)在(0,+∞)上單調(diào)遞增;
②當(dāng)a<-2
時,△>0時,g(x)=0的兩根都小于0,所以在(0,+∞)上f′(x)>0,
故f(x)在(0,+∞)上單調(diào)遞增;
③當(dāng)a>2
時,△>0,g(x)=0的兩根為:x
1=
,x
2=
,且都大于0,
當(dāng)0<x<x
1或x>x
2時f′(x)>0,當(dāng)x
1<x<x
2時f′(x)<0,
故f(x)在(0,
)和(
,+∞)上遞增,在(
,
)上遞減,
綜上,當(dāng)a
時f(x)(0,+∞)上單調(diào)遞增;當(dāng)a>
時,f(x)在(0,
)和(
,+∞)上遞增,在(
,
)上遞減;
分析:(Ⅰ)先求出函數(shù)的定義域,當(dāng)a=3時在定義域內(nèi)解不等式f′(x)>0,f′(x)<0即可;
(Ⅱ)f′(x)=
,令g(x)=x
2-ax+2,其判別式△=a
2-8,按△≤0時,△>0時兩種情況解不等式f′(x)>0,f′(x)<0,△>0時再按根與0的大小討論,即共分三種情況進(jìn)行討論解不等式即可;
點評:本題考查利用導(dǎo)數(shù)研究函數(shù)的極值、函數(shù)的單調(diào)性,考查分類討論思想,考查學(xué)生分析解決問題的能力.