【題目】下列命題:

①若,則

已知,,且的夾角為銳角,則實(shí)數(shù) 的取值范圍是;

③已知是平面上一定點(diǎn),是平面上不共線的三個(gè)點(diǎn),動(dòng)點(diǎn)滿足,則的軌跡一定通過的重心;

④在中,,邊長(zhǎng)分別為,則只有一解;

⑤如果ABC內(nèi)接于半徑為的圓,且

ABC的面積的最大值;

其中正確的序號(hào)為_______________________。

【答案】①③⑤

【解析】 , 代入上式得到,故正確;

②已知,,且的夾角為銳角,則實(shí)數(shù)的取值范圍是,故選項(xiàng)不正確;

③已知是平面上一定點(diǎn),是平面上不共線的三個(gè)點(diǎn),動(dòng)點(diǎn)滿足,,BC中點(diǎn)為E,則,則2,AE直線過重心,故P一定過重心;

根據(jù)正弦定理得,asinC=csinA,∴sinC=,故不成立.

∵2R(sin2A﹣sin2C)=(a﹣b)sinB,∴根據(jù)正弦定理,得a2﹣c2=(a﹣b)b=ab﹣b2,

可得a2+b2﹣c2=ab

∴cosC=

C為三角形的內(nèi)角,C的大小為

∵c=2Rsin=R

由余弦定理c2=a2+b2﹣2abcosC,可得

2R2=a2+b2ab≥2ab﹣ab=(2﹣)ab,當(dāng)且僅當(dāng)a=b時(shí)等號(hào)成立

∴ab≤

∴S△ABC=absinC≤ R2=

△ABC面積的最大值為;故正確,

故答案為:①③⑤

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知隨機(jī)變量 的取值為不大于 的非負(fù)整數(shù)值,它的分布列為:

0

1

2

n

其中 )滿足: ,且
定義由 生成的函數(shù) ,令
(I)若由 生成的函數(shù) ,求 的值;
(II)求證:隨機(jī)變量 的數(shù)學(xué)期望 , 的方差

(Ⅲ)現(xiàn)投擲一枚骰子兩次,隨機(jī)變量 表示兩次擲出的點(diǎn)數(shù)之和,此時(shí)由 生成的函數(shù)記為 ,求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國(guó)是世界上嚴(yán)重缺水的國(guó)家之一,城市缺水問題較為突出,某市政府為了鼓勵(lì)居民節(jié)約用水,計(jì)劃調(diào)整居民生活用水收費(fèi)方案,擬確定一個(gè)合理的月用水量標(biāo)準(zhǔn) (噸),一位居民的月用水量不超過 的部分按平價(jià)收費(fèi),超出 的部分按議價(jià)收費(fèi),為了了解居民用水情況,通過抽祥,獲得了某年100位居民毎人的月均用水量(單位:噸),將數(shù)據(jù)按照 分成 組,制成了如圖所示的頻率分布直方圖.

(1)求直方圖中a的值;
(2)若該市有110萬居民,估計(jì)全市居民中月均用水量不低于 噸的人數(shù),并說明理由;
(3)若該市政府希望使80%的居民每月的用水量不超過標(biāo)準(zhǔn) (噸),估計(jì)x的值(精確到0.01),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知兩點(diǎn)A(-2,0),B(0,1),點(diǎn)P是圓(x-1)2+y2=1上任意一點(diǎn),則△PAB面積的最大值是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=cos(2x+ )+2cos2x,x∈R.
(1)求函數(shù)f(x)的最小正周期和單調(diào)增區(qū)間;
(2)將函數(shù)f(x)的圖象向右平移 個(gè)單位長(zhǎng)度后得到函數(shù)g(x)的圖象,求函數(shù)g(x)在區(qū)間 上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知坐標(biāo)平面上的凸四邊形 ABCD 滿足 =(1, ), =(﹣ ,1),則凸四邊形ABCD的面積為; 的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某奶茶店對(duì)某時(shí)間段的奶茶銷售量及其價(jià)格進(jìn)行調(diào)查,統(tǒng)計(jì)出售價(jià)元和銷售量杯之間的一組數(shù)據(jù)如下表所示:

價(jià)格

5

5.5

6.5

7

銷售量

12

10

6

4

通過分析,發(fā)現(xiàn)銷售量對(duì)奶茶的價(jià)格具有線性相關(guān)關(guān)系.

(1)求銷售量對(duì)奶茶的價(jià)格的回歸直線方程;

(2)欲使銷售量為13杯,則價(jià)格應(yīng)定為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若a和b是計(jì)算機(jī)在區(qū)間(0,3)上產(chǎn)生的隨機(jī)數(shù),那么函數(shù)f(x)=lg(ax2+4x+4b) 的值域?yàn)镽的概率為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國(guó)加入WTO時(shí),根據(jù)達(dá)成的協(xié)議,某產(chǎn)品的市場(chǎng)供應(yīng)量P與市場(chǎng)價(jià)格x的關(guān)系近似滿足P(x)=2(1-kt)(xb)2(其中t為關(guān)銳的稅率,且t[0, ),x為市場(chǎng)價(jià)格,b、k為正常數(shù)).當(dāng)t時(shí)的市場(chǎng)供應(yīng)量曲線如圖所示.

(1)根據(jù)圖象求bk的值;

(2)記市場(chǎng)需求量為Q,它近似滿足Q(x)=,當(dāng)PQ時(shí)的市場(chǎng)價(jià)格稱為市場(chǎng)平衡價(jià)格,為使市場(chǎng)平衡價(jià)格不低于9元,求稅率的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案