【題目】已知直線與拋物線有一個公共點(diǎn).

1)求拋物線方程;

2)斜率不為0的直線經(jīng)過拋物線的焦點(diǎn),交拋物線于兩點(diǎn),.拋物線上是否存在兩點(diǎn),關(guān)于直線對稱?若存在,求出的斜率的取值范圍;若不存在,請說明理由.

【答案】(1)(2)拋物線上不存在兩點(diǎn),關(guān)于過焦點(diǎn)的直線對稱;詳見解析

【解析】

1)聯(lián)立直線與拋物線方程,消去,因?yàn)橹本與拋物相切,所以即可求出參數(shù)的值.

2)設(shè)直線的方程為.假設(shè)拋物線上存在兩點(diǎn),關(guān)于直線對稱,可設(shè)直線的方程為,聯(lián)立直線與拋物線方程,消元,設(shè),中點(diǎn)為.列出韋達(dá)定理表示出點(diǎn)坐標(biāo),其代入方程,即可判斷.

解:(1)由題聯(lián)立方程組消去

因?yàn)橹本與拋物相切,所以解得(舍)

所以拋物線的方程為.

2)由(1)可知,所以可設(shè)直線的方程為.

假設(shè)拋物線上存在兩點(diǎn),關(guān)于直線對稱,

可設(shè)直線的方程為,

聯(lián)立方程組消去

,得

設(shè),中點(diǎn)為.

,

因?yàn)?/span>在直線上,所以將其代入方程,

,即,代入,得

所以無解,故不存在.

即拋物線上不存在兩點(diǎn)關(guān)于過焦點(diǎn)的直線對稱.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義,倒平均數(shù).

1)若數(shù)列項(xiàng)的倒平均數(shù),求的通項(xiàng)公式;

2)設(shè)數(shù)列滿足:當(dāng)為奇數(shù)時,,當(dāng)為偶數(shù)時,.項(xiàng)的倒平均數(shù),求;

3)設(shè)函數(shù),對(1)中的數(shù)列,是否存在實(shí)數(shù),使得當(dāng)時,對任意恒成立?若存在,求出最大的實(shí)數(shù);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線是正常數(shù))上有兩點(diǎn)、,焦點(diǎn),

甲:;

乙:

丙:;

。.

以上是“直線經(jīng)過焦點(diǎn)”的充要條件有幾個(  )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著中國教育改革的不斷深入,越來越多的教育問題不斷涌現(xiàn).“衡水中學(xué)模式入駐浙江,可以說是應(yīng)試教育與素質(zhì)教育的強(qiáng)烈碰撞.這一事件引起了廣大市民的密切關(guān)注.為了了解廣大市民關(guān)注教育問題與性別是否有關(guān),記者在北京,上海,深圳隨機(jī)調(diào)查了100位市民,其中男性55位,女性45.男性中有45位關(guān)注教育問題,其余的不關(guān)注教育問題;女性中有30位關(guān)注教育問題,其余的不關(guān)注教育問題.

1)根據(jù)以上數(shù)據(jù)完成下列2×2列聯(lián)表;

關(guān)注教育問題

不關(guān)注教育問題

合計(jì)

30

45

45

55

合計(jì)

100

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

2)能否在犯錯誤的概率不超過0.025的前提下認(rèn)為是否關(guān)注教育與性別有關(guān)系?

參考公式:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓的左、右焦點(diǎn)分別為,離心率為,過焦點(diǎn)且垂直于x軸的直線被橢圓C截得的線段長為1

求橢圓C的方程;

點(diǎn)為橢圓C上一動點(diǎn),連接,,設(shè)的角平分線PM交橢圓C的長軸于點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某企業(yè)有職工5000人,其中男職工3500人,女職工1500人.該企業(yè)為了豐富職工的業(yè)余生活,決定新建職工活動中心,為此,該企業(yè)工會采用分層抽樣的方法,隨機(jī)抽取了300名職工每周的平均運(yùn)動時間(單位:h),匯總得到頻率分布表(如表所示),并據(jù)此來估計(jì)該企業(yè)職工每周的運(yùn)動時間:

平均運(yùn)動時間

頻數(shù)

頻率

[02

15

0.05

[24

m

0.2

[4,6

45

0.15

[68

755

0.25

[8,10

90

0.3

[1012

p

n

合計(jì)

300

1

1)求抽取的女職工的人數(shù);

2)①根據(jù)頻率分布表,求出m、n、p的值,完成如圖所示的頻率分布直方圖,并估計(jì)該企業(yè)職工每周的平均運(yùn)動時間不低于4h的概率;

男職工

女職工

總計(jì)

平均運(yùn)動時間低于4h

平均運(yùn)動時間不低于4h

總計(jì)

②若在樣本數(shù)據(jù)中,有60名女職工每周的平均運(yùn)動時間不低于4h,請完成以下2×2列聯(lián)表,并判斷是否有95%以上的把握認(rèn)為“該企業(yè)職工毎周的平均運(yùn)動時間不低于4h與性別有關(guān)”.

附:K2=,其中n=a+b+c+d

PK2k0

0.25

0.15

0.10

0.05

0.025

k0

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,離心率等于,它的一個頂點(diǎn)恰好在拋物線的準(zhǔn)線上.

求橢圓的標(biāo)準(zhǔn)方程;

點(diǎn),在橢圓上,是橢圓上位于直線兩側(cè)的動點(diǎn)當(dāng)運(yùn)動時,滿足,試問直線的斜率是否為定值,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓經(jīng)過點(diǎn),左、右焦點(diǎn)分別是,,點(diǎn)在橢圓上,且滿足點(diǎn)只有兩個.

(Ⅰ)求橢圓的方程;

(Ⅱ)過且不垂直于坐標(biāo)軸的直線交橢圓,兩點(diǎn),在軸上是否存在一點(diǎn),使得的角平分線是軸?若存在求出,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題共14分)

如圖,在四棱錐中, 平面,底面是菱形, .

()求證: 平面

)若所成角的余弦值;

)當(dāng)平面與平面垂直時,求的長.

查看答案和解析>>

同步練習(xí)冊答案