【題目】為響應(yīng)黨中央“扶貧攻堅”的號召,某單位指導(dǎo)一貧困村通過種植紫甘薯來提高經(jīng)濟(jì)收入.紫甘薯對環(huán)境溫度要求較高,根據(jù)以往的經(jīng)驗,隨著溫度的升高,其死亡株數(shù)成增長的趨勢.下表給出了2018年種植的一批試驗紫甘薯在不同溫度時6組死亡的株數(shù):

溫度(單位:℃)

21

23

24

27

29

32

死亡數(shù)(單位:株)

6

11

20

27

57

77

經(jīng)計算:,.

其中分別為試驗數(shù)據(jù)中的溫度和死亡株數(shù),

(1)是否有較強(qiáng)的線性相關(guān)性? 請計算相關(guān)系數(shù)(精確到)說明.

(2)并求關(guān)于的回歸方程(都精確到);

(3)用(2)中的線性回歸模型預(yù)測溫度為時該批紫甘薯死亡株數(shù)(結(jié)果取整數(shù)).

附:對于一組數(shù)據(jù),,……,

線性相關(guān)系數(shù),通常情況下當(dāng)大于0.8時,認(rèn)為兩

個變量有很強(qiáng)的線性相關(guān)性

其回歸直線的斜率和截距的最小二乘估計分別為:

【答案】(1)有較強(qiáng)的線性相關(guān)性;說明見解析.

(2).

(3) 預(yù)測溫度為時該批紫甘薯死亡株數(shù)約.

【解析】分析:(1),求出,所以有較強(qiáng)的線性相關(guān)性;

(2)求出系數(shù),得到回歸方程即可;

(3)代入求值即可.

詳解:(1),

,

所以

所以有較強(qiáng)的線性相關(guān)性.

(2)由(1)知,

所以

所以關(guān)于的回歸方程為.

(3)由(2)知關(guān)于的回歸方程為

當(dāng)時,

所以預(yù)測溫度為時該批紫甘薯死亡株數(shù)約.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某單位需要從甲、乙兩人中選拔一人參加新崗位培訓(xùn),特別組織了5個專項的考試,成績統(tǒng)計如下:

第一項

第二項

第三項

第四項

第五項

甲的成績

81

82

79

96

87

乙的成績

94

76

80

90

85

(1)根據(jù)有關(guān)統(tǒng)計知識,回答問題:若從甲、乙2人中選出1人參加新崗位培訓(xùn),你認(rèn)為選誰合適,請說明理由;

(2)根據(jù)有關(guān)概率知識,解答以下問題:

從甲、乙兩人的成績中各隨機(jī)抽取一個,設(shè)抽到甲的成績?yōu)?/span>,抽到乙的成績?yōu)?/span>,用表示滿足條件的事件,求事件的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2017年“十一”期間,高速公路車輛較多.某調(diào)查公司在一服務(wù)區(qū)從七座以下小型汽車中按進(jìn)服務(wù)區(qū)的先后每間隔50輛就抽取一輛的抽樣方法抽取40名駕駛員進(jìn)行詢問調(diào)查,將他們在某段高速公路的車速()分成六段: , , , , ,后得到如圖的頻率分布直方圖.

(1)求這40輛小型車輛車速的眾數(shù)和中位數(shù)的估計值;

(2)若從車速在的車輛中任抽取2輛,求車速在的車輛恰有一輛的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面內(nèi),定點(diǎn)A,B,C,D滿足 = = =﹣2,動點(diǎn)P,M滿足 =1, = ,則| |2的最大值是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】三棱錐P-ABC中,PC平面ABCPC=AC=2,AB=BCDPB上一點(diǎn),且CD平面PAB

(1)求證:AB平面PCB

(2)求異面直線APBC所成角的大小

(3)求二面角C-PA-B 的大小的余弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=x3-6x2+9x-abc,a<b<c,且f(a)=f(b)=f(c)=0.現(xiàn)給出如下結(jié)論:

f(0)f(1)>0; f(0)f(1)<0;

f(0)f(3)>0; f(0)f(3)<0.

其中正確結(jié)論的序號是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,四邊形OABP是平行四邊形,過點(diǎn)P的直線與射線OA,OB分別相交于點(diǎn)M,N,若 ,

(1)把y用x表示出來(即求y=f(x)的解析式);
(2)設(shè)數(shù)列{an}的首項a1=1,前n項和Sn滿足Sn=f(Sn1)(n≥2且n∈N*),求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等比數(shù)列前n項,前2n項,前3n項的和分別為SnS2n,S3n,求證:=Sn(S2nS3n).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有甲,乙兩個靶,某射手向甲靶射擊一次,命中的概率是 ,向乙靶射擊兩次,每次命中的概率是 ,若該射手每次射擊的結(jié)果相互獨(dú)立,則該射手完成以上三次射擊恰好命中一次的概率是(
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案