已知平面向量
a
=(3,3),
b
=(1,-2),則
a
b
夾角的余弦值為_(kāi)_____;若k
a
-
b
a
垂直,則實(shí)數(shù)k等于______.
cos<
a
,
b
=
a
b
|
a
| |
b
|
=
3-6
32+32
1+(-2)2
=-
10
10

②∵平面向量
a
=(3,3),
b
=(1,-2),∴k
a
-
b
=(3k-1,3k+2),
∵k
a
-
b
a
垂直,∴(k
a
-
b
)•
a
=3(3k-1,3k+2)•(3,3)=0,
∴3k-1+3k+2=0,解得k=-
1
6

故答案分別為-
10
10
,-
1
6
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知平面向量
a
=(
3
,-1),
b
=(
1
2
,
3
2
).
(I)若存在實(shí)數(shù)k和t,使得
x
=
a
+(t2-3)
b
,
y
=-k
a
+
b
,且
x
y
,試求函數(shù)的關(guān)系式k=f(t);
(II)根據(jù)(I)結(jié)論,確定k=f(t)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知平面向量
a
=(
3
,-1),
b
=(
1
2
,
3
2
).
(1)證明:|
a
+
b
|=|
a
-
b
|; 
(2)若存在不同時(shí)為零的實(shí)數(shù)k和t,使
x
=
a
+(t2-3)
b
,
y
=-k
a
+t
b
,且
x
y
,試求函數(shù)關(guān)系式k=f(t);
(3)據(jù)(2)的結(jié)論,討論關(guān)于t的方程f(t)-k=0的解的情況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知平面向量
a
=(
3
,-1),
b
=(
1
2
3
2
).
(1)證明:
a
b
;
(2)若存在實(shí)數(shù)k和t,使得x=
a
+(t2-3)
b
,y=-k
a
+t
b
,且x⊥y,試求函數(shù)關(guān)系式k=f(t);
(3)根據(jù)(2)的結(jié)論,確定k=f(t)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2014•江門模擬)已知平面向量
a
=(λ,-3)
,
b
=(4,-2)
,若
a
b
,則實(shí)數(shù)λ=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知平面向量
a
=(
3
,-1),
b
=(
1
2
,
3
2
).
(1)若存在實(shí)數(shù)k和t,滿足
x
=(t-2)
a
+(t2-t-5)
b
,
y
=-k
a
+4
b
,且
x
y
,求出k關(guān)于t的關(guān)系式k=f(t);
(2)根據(jù)(1)的結(jié)論,試求出函數(shù)k=f(t)在t∈(-2,2)上的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案