【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(其中為參數(shù)),以原點(diǎn)為極點(diǎn),以軸非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

)求曲線的普通方程與曲線的直角坐標(biāo)方程;

)設(shè)點(diǎn),分別是曲線,上兩動點(diǎn)且,求面積的最大值.

【答案】,;(6

【解析】

)根據(jù)題意,消參化簡得曲線的普通方程,對的極坐標(biāo)方程,兩邊同乘,利用及坐標(biāo)公式化簡可得曲線的直角坐標(biāo)方程;

)根據(jù)題意,設(shè)極坐標(biāo),則,分別代入極坐標(biāo)方程中,求得的值,,根據(jù)三角函數(shù)有界性,即可求解最值.

)由條件知消去參數(shù)得到曲線的普通方程為.

可化為,又,,代入得,于是曲線的直角坐標(biāo)方程為.

)由條件知曲線,均關(guān)于軸對稱,而且外切于原點(diǎn),

不妨設(shè),則

因曲線的極坐標(biāo)方程為,

所以,

于是,

所以當(dāng)時,面積的最大值為6.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為自然對數(shù)的底數(shù).

(Ⅰ)討論單調(diào)性;

(Ⅱ)當(dāng)時,設(shè)函數(shù)存在兩個零點(diǎn),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標(biāo)系中,曲線的極坐標(biāo)方程為,直線的極坐標(biāo)方程為,設(shè)交于、兩點(diǎn),中點(diǎn)為的垂直平分線交、.為坐標(biāo)原點(diǎn),極軸為軸的正半軸建立直角坐標(biāo)系.

1)求的直角坐標(biāo)方程與點(diǎn)的直角坐標(biāo);

2)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場經(jīng)銷某商品,根據(jù)以往資料統(tǒng)計(jì),顧客采用的付款期數(shù)的分布列為

1

2

3

4

5

P

0.4

0.2

0.2

0.1

0.1

商場經(jīng)銷一件該商品,采用1期付款,其利潤為200元;分2期或3期付款,其利潤為250元;分4期或5期付款,其利潤為300元,X表示經(jīng)銷一件該商品的利潤.

1)求事件A購買該商品的3位顧客中,至少有1位采用1期付款的概率;

2)求X的分布列及期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)上的奇函數(shù),其中,則下 列關(guān)于函數(shù)的描述中,其中正確的是(

①將函數(shù)的圖象向右平移個單位可以得到函數(shù)的圖象;

②函數(shù)圖象的一條對稱軸方程為;

③當(dāng)時,函數(shù)的最小值為

④函數(shù)上單調(diào)遞增.

A.①③B.③④C.②③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓經(jīng)過點(diǎn)M(﹣2,﹣1),離心率為.過點(diǎn)M作傾斜角互補(bǔ)的兩條直線分別與橢圓C交于異于M的另外兩點(diǎn)P、Q.

(Ⅰ)求橢圓C的方程;

(Ⅱ)試判斷直線PQ的斜率是否為定值,證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=aexx

1)求f(x)的單調(diào)區(qū)間,

2)若關(guān)于x不等式aexx+b對任意和正數(shù)b恒成立,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),分別是橢圓的左,右焦點(diǎn),兩點(diǎn)分別是橢圓的上,下頂點(diǎn),是等腰直角三角形,延長交橢圓點(diǎn),且的周長為.

1)求橢圓的方程;

2)設(shè)點(diǎn)是橢圓上異于的動點(diǎn),直線與直分別相交于兩點(diǎn),點(diǎn),求證:的外接圓恒過原點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在黨中央的正確領(lǐng)導(dǎo)下,通過全國人民的齊心協(xié)力,特別是全體一線醫(yī)護(hù)人員的共同努力,新冠肺炎疫情得到了有效控制.作為集中醫(yī)學(xué)觀察隔離點(diǎn)的某酒店在疫情期間,為客人提供兩種速食品—“方便面和“自熱米飯”.為調(diào)查這兩種速食品的受歡迎程度,酒店部門經(jīng)理記錄了連續(xù)10天這兩種速食品的銷售量,得到如下頻數(shù)分布表(其中銷售量單位:盒):

1

2

3

4

5

6

7

8

9

10

方便面

103

93

98

93

106

86

87

94

91

99

自熱米飯

88

96

98

97

101

99

102

107

104

112

1)根據(jù)兩組數(shù)據(jù)完成下面的莖葉圖(填到答題卡上);

2)根據(jù)統(tǒng)計(jì)學(xué)知識,你認(rèn)為哪種速食品更受歡迎,并簡要說明理由;

3)求自熱米飯銷售量y關(guān)于天數(shù)t的線性回歸方程,并預(yù)估第12天自熱米飯的銷售量(結(jié)果精確到整數(shù)).

參考數(shù)據(jù):,.

附:回歸直線方程,其中,.

查看答案和解析>>

同步練習(xí)冊答案