i是虛數(shù)單位,
i
1-i
=( 。
A、-
1
2
+
1
2
i
B、
1
2
+
1
2
i
C、
1
2
-
1
2
i
D、-
1
2
-
1
2
i
考點:復(fù)數(shù)代數(shù)形式的乘除運算
專題:數(shù)系的擴充和復(fù)數(shù)
分析:直接利用復(fù)數(shù)代數(shù)形式的除法運算化簡求值.
解答: 解:
i
1-i
=
i(1+i)
(1-i)(1+i)
=
-1+i
2
=-
1
2
+
1
2
i

故選:A.
點評:本題考查復(fù)數(shù)代數(shù)形式的除法運算,是基礎(chǔ)的計算題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知i是虛數(shù)單位,則復(fù)數(shù)z=i3•(-1+2i)的虛部為( 。
A、2iB、iC、2D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

1
1-i
=a+bi,(a,b∈R),則ab為( 。
A、1
B、
2
C、
2
2
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x、y滿足約束條件
x-y+2≥0
3x-y-2≤0
x≥0
y≥0
,若目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值為6,則log3
1
a
+
2
b
)的最小值為(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x的不等式x2-3ax+2a2<0(a>0)的解集為(x1,x2),則x1+x2+
2a
x1x2
的取值范圍是( 。
A、(0,2
2
]
B、(0,2
3
]
C、[2
3
,+∞)
D、[2
6
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的前n項和為Sn(n∈N*),且an=2n+λ,若數(shù)列{Sn}在{n|n≥5,n∈N+}內(nèi)為遞增數(shù)列,則實數(shù)λ的取值范圍為( 。
A、(-3,+∞)
B、(-10,+∞)
C、[-11,+∞)
D、(-12,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|0<x<6},B={x||x-2|<3},則A∩B=( 。
A、{x|-1<x<6}
B、{x|-1<x<5}
C、{x|0<x<3}
D、{x|0<x<5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知變量x,y滿足
x-2y+4≥0
x≤2
x+y-2≥0
,則x2+y2的取值范圍是(  )
A、[
2
,
13
]
B、[
2
,
5
]
C、[2,13]
D、[2,5]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用記號
n
i=0
ai表示a0+a1+a2+a3+…+an,bn=
n
i=0
a2i,其中i∈N,n∈N*
(1)設(shè)
2n
k=1
(1+x)k=a0+a1x+a2x2+…+a2n-1x2n-1+a2nx2n(x∈R),求b2的值;
(2)若a0,a1,a2,…,an成等差數(shù)列,求證:
n
i=0
(aiC
 
i
n
)=(a0+an)•2n-1;
(3)在條件(1)下,記dn=1+
n
i=1
[(-1)ibiC
 
i
n
],計算
lim
n→∞
dn
bn
的值.

查看答案和解析>>

同步練習(xí)冊答案