【題目】已知點(diǎn)A(0,﹣2),橢圓E: =1(a>b>0)的離心率為 ,F(xiàn)是橢圓E的右焦點(diǎn),直線(xiàn)AF的斜率為 ,O為坐標(biāo)原點(diǎn)
(1)求E的方程
(2)設(shè)過(guò)點(diǎn)A的動(dòng)直線(xiàn)l與E相交于P,Q兩點(diǎn),問(wèn):是否存在直線(xiàn)l,使以PQ為直徑的圓經(jīng)過(guò)點(diǎn)原點(diǎn)O,若存在,求出對(duì)應(yīng)直線(xiàn)l的方程,若不存在,請(qǐng)說(shuō)明理由.

【答案】
(1)

解:設(shè)F(c,0),由條件知, ,解得c= ,又

∴a=2,b2=a2﹣c2=1,

∴E的方程為:


(2)

解:當(dāng)l⊥x軸時(shí),不合題意;

當(dāng)直線(xiàn)l斜率存在時(shí),設(shè)直線(xiàn)l:y=kx﹣2,P(x1,y1),Q(x2,y2),

把y=kx﹣2代入 ,化簡(jiǎn)得(1+4k2)x2﹣16kx+12=0.

由△=16(4k2﹣3)>0,得 ,即k<﹣ 或k>

, ,

若存在以PQ為直徑的圓經(jīng)過(guò)點(diǎn)原點(diǎn)O,則 ,

,即 ,

∴k2=4,符合△>0,

∴存在k=±2,符合題意,

此時(shí)l:y=2x﹣2或y=﹣2x﹣2


【解析】(1)設(shè)出F,由直線(xiàn)AF的斜率為 求得c,結(jié)合離心率求得a,再由隱含條件求得b,則橢圓方程可求;(2)當(dāng)l⊥x軸時(shí),不合題意;當(dāng)直線(xiàn)l斜率存在時(shí),設(shè)直線(xiàn)l:y=kx﹣2代入橢圓方程化簡(jiǎn),由判別式大于0求得k的范圍,若存在以PQ為直徑的圓經(jīng)過(guò)點(diǎn)原點(diǎn)O,求出 ,即 ,得到k2=4,符合△>0,進(jìn)一步求出k值,則直線(xiàn)方程可求.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,地面上有一豎直放置的圓形標(biāo)志物,圓心為C,與地面的接觸點(diǎn)為G.與圓形標(biāo)志物在同一平面內(nèi)的地面上點(diǎn)P處有一個(gè)觀測(cè)點(diǎn),且PG=50m.在觀測(cè)點(diǎn)正前方10m處(即PD=10m)有一個(gè)高為10m(即ED=10m)的廣告牌遮住了視線(xiàn),因此在觀測(cè)點(diǎn)所能看到的圓形標(biāo)志的最大部分即為圖中從A到F的圓弧.

(1)若圓形標(biāo)志物半徑為25m,以PG所在直線(xiàn)為x軸,G為坐標(biāo)原點(diǎn),建立直角坐標(biāo)系,求圓C和直線(xiàn)PF的方程;
(2)若在點(diǎn)P處觀測(cè)該圓形標(biāo)志的最大視角(即∠APF)的正切值為 ,求該圓形標(biāo)志物的半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a為常數(shù),函數(shù)f(x)=xlnx﹣ ax2
(1)當(dāng)a=0時(shí),求函數(shù)f(x)的最小值;
(2)若f(x)有兩個(gè)極值點(diǎn)x1 , x2(x1<x2
①求實(shí)數(shù)a的取值范圍;
②求證:x1x2>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C: =1(a>b>0)的上頂點(diǎn)為(0,2),且離心率為 . (Ⅰ)求橢圓C的方程;
(Ⅱ)從橢圓C上一點(diǎn)M向圓x2+y2=1上引兩條切線(xiàn),切點(diǎn)分別為A、B,當(dāng)直線(xiàn)AB分別與x軸、y軸交于P、Q兩點(diǎn)時(shí),求|PQ|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一個(gè)容量為100的樣本,其頻率分布直方圖如圖所示,已知樣本數(shù)據(jù)落在區(qū)間[10,12)內(nèi)的頻數(shù)比樣本數(shù)據(jù)落在區(qū)間[8,10)內(nèi)的頻數(shù)少12,則實(shí)數(shù)m的值等于(
A.0.10
B.0.11
C.0.12
D.0.13

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】執(zhí)行如圖的程序框圖,則輸出S的值為(
A.2
B.﹣3
C.﹣
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=logax(a>0且a≠1)在區(qū)間[1,2]上的最大值與函數(shù)g(x)=﹣ 在區(qū)間[1,2]上的最大值互為相反數(shù).
(1)求a的值;
(2)若函數(shù)F(x)=f(x2﹣mx﹣m)在區(qū)間(﹣∞,1﹣ )上是減函數(shù),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正方體ABCD﹣A1B1C1D1的棱長(zhǎng)為1,給出下列四個(gè)命題: ①對(duì)角線(xiàn)AC1被平面A1BD和平面B1 CD1三等分;
②正方體的內(nèi)切球、與各條棱相切的球、外接球的表面積之比為1:2:3;
③以正方體的頂點(diǎn)為頂點(diǎn)的四面體的體積都是 ;
④正方體與以A為球心,1為半徑的球在該正方體內(nèi)部部分的體積之比為6:π
其中正確命題的序號(hào)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=lg (a>0)為奇函數(shù),函數(shù)g(x)= +b(b∈R).
(Ⅰ)求a;
(Ⅱ)若b>1,討論方徎g(x)=ln|x|實(shí)數(shù)根的個(gè)數(shù);
(Ⅲ)當(dāng)x∈[ ]時(shí),關(guān)于x的不等式f(1﹣x)≤log(x)有解,求b的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案