精英家教網 > 高中數學 > 題目詳情
(I)已知a1,a2∈R,a1+a2=1,求證:a12+a22
1
2
;
(II)若a1,a2,…an∈R,a1+a2+…+an=1,求證:a12+a22+…+an2
1
n
分析:(I)構造函數f(x)=(x-a12+(x-a22=2x2-2x+a12+a22,因為對一切x∈R,恒有f(x)≥0,所以△≤0,從而得結論;
(II)由已知中已知a1,a2∈R,a1+a2=1,求證a12+a22
1
2
,及整個式子的證明過程,我們根據歸納推理可以得到一個一般性的公式,若a1,a2,…,an∈R,a1+a2+…+an=1,則a12+a22+…+an2
1
n
,但此公式是由歸納推理得到的,其正確性還沒有得到驗證,觀察已知中的證明過程,我們可以類比對此公式進行證明.
解答:(I)證明:構造函數f(x)=(x-a12+(x-a22=2x2-2x+a12+a22
因為對一切x∈R,恒有f(x)≥0,
所以△=4-8(a12+a22)≤0,從而得a12+a22
1
2
,
(II)證明:構造函數
f(x)=(x-a12+(x-a22+…+(x-an2
=nx2-2(a1+a2+…+an)x+a12+a22+…+an2
=2x2-2x+a12+a22+…+an2
因為對一切x∈R,都有f(x)≥0,所以△=4-4n(a12+a22+…+an2)≤0
從而證得:a12+a22+…+an2
1
n
點評:歸納推理的一般步驟是:(1)通過觀察個別情況發(fā)現某些相同性質;(2)從已知的相同性質中推出一個明確表達的一般性命題(猜想).(3)對歸納得到的一般性結論進行證明.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

(I)已知a1,a2∈R,a1+a2=1,求證:a12+a22數學公式;
(II)若a1,a2,…an∈R,a1+a2+…+an=1,求證:a12+a22+…+an2數學公式

查看答案和解析>>

科目:高中數學 來源:門頭溝區(qū)一模 題型:解答題

(I)已知a1,a2∈R,a1+a2=1,求證:a12+a22
1
2
;
(II)若a1,a2,…an∈R,a1+a2+…+an=1,求證:a12+a22+…+an2
1
n

查看答案和解析>>

科目:高中數學 來源:2013年高考百天仿真沖刺數學試卷4(文科)(解析版) 題型:解答題

(I)已知a1,a2∈R,a1+a2=1,求證:a12+a22;
(II)若a1,a2,…an∈R,a1+a2+…+an=1,求證:a12+a22+…+an2

查看答案和解析>>

科目:高中數學 來源:2011年北京市門頭溝區(qū)高考數學一模試卷(文科)(解析版) 題型:解答題

(I)已知a1,a2∈R,a1+a2=1,求證:a12+a22
(II)若a1,a2,…an∈R,a1+a2+…+an=1,求證:a12+a22+…+an2

查看答案和解析>>

同步練習冊答案