【題目】已知函數(shù),其中為常數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)若存在兩個(gè)極值點(diǎn),求證:無論實(shí)數(shù)取什么值都有.

【答案】(1)答案見解析; (2)證明過程見解析.

【解析】

試題分析:(1)先求得定義域?yàn)?/span>,求導(dǎo)通分后研究導(dǎo)函數(shù)的分子,利用判別式對(duì)分子根的個(gè)數(shù)和分布進(jìn)行分類討論,由此求得函數(shù)的單調(diào)區(qū)間;(2)由(1)知時(shí)有兩個(gè)極值點(diǎn),且,由此利用差比較法,計(jì)算的最小值為,即可得證.

試題解析:(1)函數(shù)的定義域?yàn)?/span>.

,記,判別式.

當(dāng)時(shí),恒成立,,所以在區(qū)間上單調(diào)遞增.

當(dāng)時(shí),方程有兩個(gè)不同的實(shí)數(shù)根,記,,顯然

)若,圖象的對(duì)稱軸,.

兩根在區(qū)間上,可知當(dāng)時(shí)函數(shù)單調(diào)遞增,,所以,所以在區(qū)間上遞增.

)若,則圖象的對(duì)稱軸,.,所以,當(dāng)時(shí),,所以,所以上單調(diào)遞減.當(dāng)時(shí),,所以,所以上單調(diào)遞增.

綜上,當(dāng)時(shí),在區(qū)間上單調(diào)遞增;當(dāng)時(shí),上單調(diào)遞減,在上單調(diào)遞增.

2)由(1)知當(dāng)時(shí),沒有極值點(diǎn),當(dāng)時(shí),有兩個(gè)極值點(diǎn),且.

,

,

.,,則,所以時(shí)單調(diào)遞增,,所以,所以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】據(jù)悉遵義市紅花崗區(qū)、匯川區(qū)2017年現(xiàn)有人口總數(shù)為110萬人,如果年自然增長(zhǎng)率為,試解答以下問題:

(1)寫出經(jīng)過年后,遵義市人口總數(shù)(單位:萬人)關(guān)于的函數(shù)關(guān)系式;

(2)計(jì)算10年以后遵義市人口總數(shù)(精確到0.1萬人);

(3)計(jì)算經(jīng)過多少年后遵義市人口將達(dá)到150萬人(精確到1年)

(參考數(shù)據(jù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)的定義域?yàn)?/span>D,若函數(shù)滿足條件:存在,使上的值域?yàn)?/span>,則稱為“倍縮函數(shù)”,若函數(shù)為“倍縮函數(shù)”,則實(shí)數(shù)的取值范圍是(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左焦點(diǎn)為,其左、右頂點(diǎn)為、,橢圓與軸正半軸的交點(diǎn)為,的外接圓的圓心在直線上.

I)求橢圓的方程;

II)已知直線是橢圓上的動(dòng)點(diǎn),,垂足為,是否存在點(diǎn),使得為等腰三角形?若存在,求出點(diǎn)的坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線,圓,點(diǎn)為拋物線上的動(dòng)點(diǎn),為坐標(biāo)原點(diǎn),線段的中點(diǎn)的軌跡為曲線.

(1)求拋物線的方程;

(2)點(diǎn)是曲線上的點(diǎn),過點(diǎn)作圓的兩條切線,分別與軸交于兩點(diǎn).

面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了增強(qiáng)環(huán)保意識(shí),某社團(tuán)從男生中隨機(jī)抽取了60人,從女生中隨機(jī)抽取了50人參加環(huán)保知識(shí)測(cè)試,統(tǒng)計(jì)數(shù)據(jù)如下表所示:

優(yōu)秀

非優(yōu)秀

總計(jì)

男生

40

20

60

女生

20

30

50

總計(jì)

60

50

110

(1)試判斷是否有99%的把握認(rèn)為環(huán)保知識(shí)是否優(yōu)秀與性別有關(guān);

(2)為參加市舉辦的環(huán)保知識(shí)競(jìng)賽,學(xué)校舉辦預(yù)選賽,現(xiàn)在環(huán)保測(cè)試優(yōu)秀的同學(xué)中選3人參加預(yù)選賽,已知在環(huán)保測(cè)試中優(yōu)秀的同學(xué)通過預(yù)選賽的概率為,若隨機(jī)變量表示這3人中通過預(yù)選賽的人數(shù),求的分布列與數(shù)學(xué)期望.

附:

0.500

0.400

0.100

0.010

0.001

0.455

0.708

2.706

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為減少空氣污染,某市鼓勵(lì)居民用電(減少燃?xì)饣蛉济海捎梅侄斡?jì)費(fèi)的方法計(jì)算:電費(fèi)每月用電不超過100度時(shí),按每度0.57元計(jì)算;每月用電量超過100度時(shí),其中的100度仍按原標(biāo)準(zhǔn)收費(fèi),超過的部分每度按0.5元計(jì)算.

(Ⅰ)設(shè)月用電度時(shí),應(yīng)交電費(fèi)元,寫出關(guān)于的函數(shù)關(guān)系式;

(Ⅱ)小明家第一季度繳納電費(fèi)情況如下:

月份

一月

二月

三月

合計(jì)

交費(fèi)金額

76元

63元

45.6元

184.6元

問小明家第一季度共用電多少度?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種產(chǎn)品的廣告費(fèi)用支出與銷售額之間有如下的對(duì)應(yīng)數(shù)據(jù):

2

4

5

6

8

30

40

60

50

70

(1)畫出散點(diǎn)圖;并說明銷售額y與廣告費(fèi)用支出x之間是正相關(guān)還是負(fù)相關(guān)?

(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),求回歸直線方程;

(3)據(jù)此估計(jì)廣告費(fèi)用為10時(shí),銷售收入的值.

(參考公式:,).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),求函數(shù)上的最大值;

(2)令,若在區(qū)間上為單調(diào)遞增函數(shù),求的取值范圍;

(3)當(dāng)時(shí),函數(shù)的圖象與軸交于兩點(diǎn),且,又的導(dǎo)函數(shù).若正常數(shù)滿足條件.試比較與0的關(guān)系,并給出理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案