設數(shù)列{an}的前n項和為Sn,對任意的正整數(shù)n,都有an=5Sn+1成立,記bn=(n∈N*),
(Ⅰ)求數(shù)列{an}與數(shù)列{bn}的通項公式;
(Ⅱ)設數(shù)列{bn}的前n項和為Rn,是否存在正整數(shù)k,使得Rk≥4k成立?若存在,找出一個正整數(shù)k;若不存在,請說明理由;
(Ⅲ)記cn=b2n-b2n-1(n∈N*),設數(shù)列{cn}的前n項和為Tn,求證:對任意正整數(shù)n,都有Tn。
解:(Ⅰ)當n=1時,,∴,
又∵,
,即,
∴數(shù)列{an}成等比數(shù)列,其首項,公比
,;
(Ⅱ)不存在正整數(shù)k,使得成立;
下證:對任意的正整數(shù)n,都有成立,
由(Ⅰ)知,


∴當n為偶數(shù)時,設n=2m(m∈N*),
;
當n為奇數(shù)時,設n=2m-1(m∈N*),

∴對于一切的正整數(shù)n,都有Rn<4k,
∴不存在正整數(shù)k,使得成立.
(Ⅲ)由

,
,
,
當n=1時,
當n≥2時,
。
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}的前n項的和為Sn,且Sn=3n+1.
(1)求數(shù)列{an}的通項公式;
(2)設bn=an(2n-1),求數(shù)列{bn}的前n項的和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設數(shù)列an的前n項的和為Sn,a1=
3
2
,Sn=2an+1-3

(1)求a2,a3;
(2)求數(shù)列an的通項公式;
(3)設bn=(2log
3
2
an+1)•an
,求數(shù)列bn的前n項的和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}的前n項和Sn=2an+
3
2
×(-1)n-
1
2
,n∈N*
(Ⅰ)求an和an-1的關(guān)系式;
(Ⅱ)求數(shù)列{an}的通項公式;
(Ⅲ)證明:
1
S1
+
1
S2
+…+
1
Sn
10
9
,n∈N*

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

不等式組
x≥0
y≥0
nx+y≤4n
所表示的平面區(qū)域為Dn,若Dn內(nèi)的整點(整點即橫坐標和縱坐標均為整數(shù)的點)個數(shù)為an(n∈N*
(1)寫出an+1與an的關(guān)系(只需給出結(jié)果,不需要過程),
(2)求數(shù)列{an}的通項公式;
(3)設數(shù)列an的前n項和為SnTn=
Sn
5•2n
,若對一切的正整數(shù)n,總有Tn≤m成立,求m的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•鄭州一模)設數(shù)列{an}的前n項和Sn=2n-1,則
S4
a3
的值為( 。

查看答案和解析>>

同步練習冊答案