已知函數(shù)
的圖象是連續(xù)不斷的曲線,且有如下的對應(yīng)值表
| 1
| 2
| 3
| 4
| 5
| 6
|
| 124.4
| 35
| -74
| 14.5
| -56.7
| -123.6
|
則函數(shù)
在區(qū)間[1,6]上的零點至少有( )
A、2個 B、3個 C、4個 D、5個
試題分析:依題意,
,
,
,故函數(shù)
在區(qū)間[1,6]上的零點至少有3個,故選B.
點評: 函數(shù)的表示方法:列表法、圖像法、解析式法.用二分法判斷函數(shù)的零點的方法:函數(shù)
在區(qū)間
有定義,若
,則函數(shù)
在
上有零點.
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分14分)
已知函數(shù)f(x)=lnx+
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)設(shè)m
R,對任意的a∈(-l,1),總存在x
o∈[1,e],使得不等式ma - (x
o)<0成立,求實數(shù)m的取值范圍;
(Ⅲ)證明:ln
2 l+ 1n
22,+…+ln
2 n>
∈N*).
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題14分)設(shè)函數(shù)
.
(Ⅰ)討論
的單調(diào)性;
(Ⅱ)已知
,若函數(shù)
的圖象總在直線
的下方,求
的取值范圍;
(Ⅲ)記
為函數(shù)
的導(dǎo)函數(shù).若
,試問:在區(qū)間
上是否存在
(
)個正數(shù)
…
,使得
成立?請證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
已知函數(shù)
.
(1)當
時,求
的極值;
(2)當
時,試比較
與
的大;
(3)求證:
(
).
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知函數(shù)
在
上單調(diào)遞減,則
的取值范圍是
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分12分)
已知函數(shù)
;
(1)當
時,判斷
在定義域上的單調(diào)性;
(2)求
在
上的最小值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分12分)在五棱錐
,
,
,
,
,
(1)求證:
平面
;
(2)求二面角
的正弦值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
函數(shù)
的大致圖象是( )
A、 B、 C、 D、
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分16分)
已知函數(shù)
,
,
.
(1)當
時,若函數(shù)
在區(qū)間
上是單調(diào)增函數(shù),試求
的取值范圍;
(2)當
時,直接寫出(不需給出演算步驟)函數(shù)
(
)的單調(diào)增區(qū)間;
(3)如果存在實數(shù)
,使函數(shù)
,
(
)在
處取得最小值,試求實數(shù)
的最大值.
查看答案和解析>>