【題目】設(shè)的內(nèi)心,三邊長,點(diǎn)在邊上,且,若直線交直線于點(diǎn),則線段的長為______.

【答案】

【解析】

設(shè)內(nèi)切圓⊙I與三角形三邊分別相切于點(diǎn)O,DEIOAB,建立直角坐標(biāo)系.分別設(shè)AOx,BOy,CDz.利用切線的性質(zhì)定理可得x,y,z.利用余弦定理可得cosB,sinB,tanB,可得直線BC的方程.設(shè)內(nèi)切圓的半徑為r.則,解得r,得I坐標(biāo),可得直線PI的方程,聯(lián)立直線BCPI解得Q.即可得|CQ|6|BQ|

如圖所示,設(shè)內(nèi)切圓⊙I與三角形三邊分別相切于點(diǎn)O,DE,IOAB,建立直角坐標(biāo)系.

分別設(shè)AOx,BOyCDz,則,解得x3,y4,z2O0,0),B4,0),P(﹣1,0),

中,cosB,sinB,可得tanB

直線BC的方程為:yx4).

設(shè)內(nèi)切圓的半徑為r.則,解得r.可得I

直線PI的方程為:yx+,即yx+

聯(lián)立,解得Q,

|CQ|6|BQ|66

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是一旅游景區(qū)供游客行走的路線圖,假設(shè)從進(jìn)口開始到出口,每遇到一個岔路口,每位游客選擇其中一條道路行進(jìn)是等可能的.現(xiàn)有甲、乙、丙、丁共名游客結(jié)伴到旅游景區(qū)游玩,他們從進(jìn)口的岔路口就開始選擇道路自行游玩,并按箭頭所指路線行走,最后到出口集中,設(shè)點(diǎn)是其中的一個交叉路口點(diǎn).

(1)求甲經(jīng)過點(diǎn)的概率;

(2)設(shè)這名游客中恰有名游客都是經(jīng)過點(diǎn),求隨機(jī)變量的概率分布和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),若方程為常數(shù))有兩個不相等的根,則實(shí)數(shù)的取值范圍是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓的離心率是,過點(diǎn)的動直線與橢圓相交于兩點(diǎn),當(dāng)直線軸平行時,直線被橢圓截得的線段長為.

(Ⅰ)求橢圓的方程

(Ⅱ)在軸上是否存在異于點(diǎn)的定點(diǎn),使得直線變化時總有?若存在,求出點(diǎn)的坐標(biāo)若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形中,,,,分別在上,,現(xiàn)將四邊形沿折起,使平面平面.

(Ⅰ)若,在折疊后的線段上是否存在一點(diǎn),且,使得平面?若存在,求出的值;若不存在,說明理由;

(Ⅱ)當(dāng)三棱錐的體積最大時,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)與點(diǎn)在直線的兩側(cè),給出以下結(jié)論:①;②當(dāng)時,有最小值,無最大值;③;④當(dāng)時,的取值范圍是,正確的個數(shù)為(

A.1B.2C.3D.以上都不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】分形幾何學(xué)是一門以不規(guī)則幾何形態(tài)為研究對象的幾何學(xué).分形的外表結(jié)構(gòu)極為復(fù)雜,但其內(nèi)部卻是有規(guī)律可尋的.一個數(shù)學(xué)意義上分形的生成是基于一個不斷迭代的方程式,即一種基于遞歸的反饋系統(tǒng).下面我們用分形的方法來得到一系列圖形,如圖1,線段的長度為a,在線段上取兩個點(diǎn),,使得,以為一邊在線段的上方做一個正六邊形,然后去掉線段,得到圖2中的圖形;對圖2中的最上方的線段作相同的操作,得到圖3中的圖形;依此類推,我們就得到了以下一系列圖形:

記第個圖形(圖1為第1個圖形)中的所有線段長的和為,現(xiàn)給出有關(guān)數(shù)列的四個命題:

①數(shù)列是等比數(shù)列;

②數(shù)列是遞增數(shù)列;

③存在最小的正數(shù),使得對任意的正整數(shù) ,都有

④存在最大的正數(shù),使得對任意的正整數(shù),都有

其中真命題的序號是________________(請寫出所有真命題的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知動圓P恒過定點(diǎn),且與直線相切.

(Ⅰ)求動圓P圓心的軌跡M的方程;

(Ⅱ)正方形ABCD中,一條邊AB在直線y=x+4上,另外兩點(diǎn)C、D在軌跡M上,求正方形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】當(dāng)前,以“立德樹人”為目標(biāo)的課程改革正在有序推進(jìn).高中聯(lián)招對初三畢業(yè)學(xué)生進(jìn)行體育測試,是激發(fā)學(xué)生、家長和學(xué)校積極開展體育活動,保證學(xué)生健康成長的有效措施.程度2019年初中畢業(yè)生升學(xué)體育考試規(guī)定,考生必須參加立定跳遠(yuǎn)、擲實(shí)心球、1分鐘跳繩三項(xiàng)測試,三項(xiàng)考試滿分50分,其中立定跳遠(yuǎn)15分,擲實(shí)心球15分,1分鐘跳繩20分.某學(xué)校在初三上期開始時要掌握全年級學(xué)生每分鐘跳繩的情況,隨機(jī)抽取了100名學(xué)生進(jìn)行測試,得到下邊頻率分布直方圖,且規(guī)定計分規(guī)則如下表:

每分鐘跳繩個數(shù)

得分

17

18

19

20

(Ⅰ)現(xiàn)從樣本的100名學(xué)生中,任意選取2人,求兩人得分之和不大于35分的概率;;

(Ⅱ)若該校初三年級所有學(xué)生的跳繩個數(shù)服從正態(tài)分布,用樣本數(shù)據(jù)的平均值和方差估計總體的期望和方差,已知樣本方差(各組數(shù)據(jù)用中點(diǎn)值代替).根據(jù)往年經(jīng)驗(yàn),該校初三年級學(xué)生經(jīng)過一年的訓(xùn)練,正式測試時每人每分鐘跳繩個數(shù)都有明顯進(jìn)步,假設(shè)今年正式測試時每人每分鐘跳繩個數(shù)比初三上學(xué)期開始時個數(shù)增加10個,現(xiàn)利用所得正態(tài)分布模型:

預(yù)計全年級恰有2000名學(xué)生,正式測試每分鐘跳182個以上的人數(shù);(結(jié)果四舍五入到整數(shù))

若在全年級所有學(xué)生中任意選取3人,記正式測試時每分鐘跳195以上的人數(shù)為ξ,求隨機(jī)變量的分布列和期望.

附:若隨機(jī)變量服從正態(tài)分布,則,,.

查看答案和解析>>

同步練習(xí)冊答案