【題目】已知Sn是等差數(shù)列{an}的前n項和,且S6>S7>S5 , 給出下列五個命題:①d<1;②S11>0;③S12<0;④數(shù)列{Sn}中的最大項為S11;⑤|a6|>|a7|.其中正確命題有

【答案】①②⑤
【解析】解:∵S6>S7>S5 , ∴a6>a6+a7>0,
∴a7<0<a6 ,
∴a1>0,公差d=a7﹣a6<0,
∴①正確,
∴等差數(shù)列{an}是遞減數(shù)列,
∴④錯誤,
∵S11=11a1+55d=11(a1+5d)>0,
S12=12a1+66d=6(a1+a12)=6(a6+a7)>0,
∴②⑤正確,③錯誤,
所以答案是:①②⑤.
【考點精析】本題主要考查了等差數(shù)列的前n項和公式的相關(guān)知識點,需要掌握前n項和公式:才能正確解答此題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,且過點

(1)求E的方程;

2)若直線E相交于兩點,且為坐標原點)的斜率之和為2,求點到直線的距離的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=log4(2x+3﹣x2).
(1)求函數(shù)f(x)的單調(diào)區(qū)間,
(2)當x∈(0, ]時,求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若a滿足x+lgx=4,b滿足x+10x=4,函數(shù)f(x)= ,則關(guān)于x的方程f(x)=x的解的個數(shù)是(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列四個命題:
①“等邊三角形的三個內(nèi)角均為60°”的逆命題;
②“若k>0,則方程x2+2x﹣k=0有實根”的逆否命題;
③“全等三角形的面積相等”的否命題;
④“若 = ,則 ”的否命題,
其中真命題的個數(shù)是(
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= 的定義域為集合A,函數(shù)g(x)=lg(﹣x2+2x+m)的定義域為集合B.
(1)當m=3時,求A∩(RB)
(2)若A∩B={x|﹣1<x<4},求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐中, 底面, , , , 分別是 的中點, 上,且

(1)求證: 平面;

(2)在線段上上是否存在點,使二面角

的大小為?若存在,求出的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)是定義在[﹣1,1]上的奇函數(shù),且f(1)=1,若x,y∈[﹣1,1],x+y≠0有(x+y)[f(x)+f(y)]>0.
(1)判斷f(x)的單調(diào)性,并加以證明;
(2)解不等式
(3)若f(x)≤m2﹣2am+1對所有x∈[﹣1,1],a∈[﹣1,1]恒成立.求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中,,,分別是角A,B,C的對邊,且.

(1)求角的值;

(2)已知函數(shù),將的圖像向左平移個單位長度后得到函數(shù)的圖像,求的單調(diào)增區(qū)間.

查看答案和解析>>

同步練習冊答案