設(shè)變量x,y滿足約束條件
x≥0
y≥0
2x+y≤4
2x+3y≤6
,則z=4x+3y的最大值是( 。
A、7B、8C、9D、10
考點(diǎn):簡單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:作出不等式組對(duì)應(yīng)的平面區(qū)域,利用z的幾何意義利用數(shù)形結(jié)合即可得到結(jié)論.
解答: 解:由約束條件作出其所確定的平面區(qū)域(陰影部分),
平移直線z=4x+3y,由圖象可知當(dāng)直線z=4x+3y經(jīng)過點(diǎn)A時(shí),
目標(biāo)函數(shù)z=4x+3y取得最大值,
2x+y=4
2x+3y=6
,解得
x=
3
2
y=1
,
即A(
3
2
,1
),
即z=4×
3
2
+1
×3=9,
故z的最大值為9.
故選:C.
點(diǎn)評(píng):本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.要求熟練掌握常見目標(biāo)函數(shù)的幾何意義.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={a,b},B={x丨x∈A},則集合A與B的關(guān)系為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

當(dāng)a≥b>0時(shí),雙曲線
x2
a2
-
y2
b2
=1的離心率e的取值范圍是(  )
A、(0,
2
2
]
B、[
2
2
,1)
C、(1,
2
]
D、[
2
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)為定義在R上的可導(dǎo)函數(shù),且f(x)<f′(x),對(duì)任意x∈R恒成立,則( 。
A、f(2)>e2f(0),f(2012)>e2012f(0)
B、f(2)<e2f(0),f(2012)>e2012f(0)
C、f(2)>e2f(0),f(2012)<e2012f(0)
D、f(2)<e2f(0),f(2012)<e2012f(0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l:y=2x+b與函數(shù)y=
1
x
的圖象交于A,B兩點(diǎn),記△OAB的面積為S(O為坐標(biāo)原點(diǎn)),則函數(shù)S=f(b)是(  )
A、奇函數(shù)且在(0,+∞)上單調(diào)遞增
B、偶函數(shù)且在(0,+∞)上單調(diào)遞增
C、奇函數(shù)且在(0,+∞)上單調(diào)遞減
D、偶函數(shù)且在(0,+∞)上單調(diào)遞減

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)A是橢圓
x2
25
+
y2
9
=1上的一個(gè)動(dòng)點(diǎn),點(diǎn)P在線段OA的延長上,且
OA
OP
=48.則點(diǎn)P的橫坐標(biāo)的最大值為(  )
A、18
B、15
C、10
D、
15
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知i為虛數(shù)單位,復(fù)數(shù)z=2i(2-i)的實(shí)部為a,虛部為b,則logab等于(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列中,a1=1,數(shù)列{an+1-3an}是首項(xiàng)為9,公比為3的等比數(shù)列.
(Ⅰ)求a2,a3;
(Ⅱ)求數(shù)列{
an
3n
}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,曲線C1的參數(shù)方程為
x=acosφ
y=bsinφ
(a>b>0,φ為參數(shù)),且曲線C1上的點(diǎn)M(2,
3
)對(duì)應(yīng)的參數(shù)φ=
π
3
.且以O(shè)為極點(diǎn),X軸的正半軸為極軸建立極坐標(biāo)系,曲線C2是圓心在極軸上且經(jīng)過極點(diǎn)的圓,射線θ=
π
4
與曲線C2交于點(diǎn)D(
2
π
4
).
(1)求曲線C1的普通方程,C2的極坐標(biāo)方程;
(2)若A(ρ1,θ),B(ρ2,θ+
π
2
)是曲線C1上的兩點(diǎn),求
1
ρ12
+
1
ρ22
的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案