((本題滿(mǎn)分14分)
已知橢圓的左焦點(diǎn)及點(diǎn),原點(diǎn)到直線(xiàn)的距離為.
(1)求橢圓的離心率;
(2)若點(diǎn)關(guān)于直線(xiàn)的對(duì)稱(chēng)點(diǎn)在圓上,求橢圓的方程及點(diǎn)的坐標(biāo).
解:(1)由點(diǎn),點(diǎn)及得直線(xiàn)的方程為,即,…………………2分
∵原點(diǎn)到直線(xiàn)的距離為,
∴………………………………………5分
故橢圓的離心率. …………………………………7分
(2) 解法一:設(shè)橢圓的左焦點(diǎn)關(guān)于直線(xiàn)的對(duì)稱(chēng)點(diǎn)為,則有
…………………………………………10分
解之,得.
在圓上
∴,
∴……………………………………13分
故橢圓的方程為,
點(diǎn)的坐標(biāo)為………………………………………14分
解法二:因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052309423596876511/SYS201205230946268125425534_DA.files/image012.png">關(guān)于直線(xiàn)的對(duì)稱(chēng)點(diǎn)在圓上,又直線(xiàn)經(jīng)過(guò)
圓的圓心,所以也在圓上, ………9分
從而, ………………………10分
故橢圓的方程為. ………………………………………11分
與關(guān)于直線(xiàn)的對(duì)稱(chēng),
…………………………………………12分
解之,得.…………………………………………13分
故點(diǎn)的坐標(biāo)為………………………………………14分
【解析】略
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
π |
3 |
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本題滿(mǎn)分14分)如圖,四邊形ABCD為矩形,AD⊥平面ABE,AE=EB=BC=2,為上的點(diǎn),且BF⊥平面ACE.
(1)求證:AE⊥BE;(2)求三棱錐D-AEC的體積;(3)設(shè)M在線(xiàn)段AB上,且滿(mǎn)足AM=2MB,試在線(xiàn)段CE上確定一點(diǎn)N,使得MN∥平面DAE.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江蘇省高三上學(xué)期期中考試數(shù)學(xué) 題型:解答題
(本題滿(mǎn)分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}
(Ⅰ)若AB=[0,3],求實(shí)數(shù)m的值
(Ⅱ)若ACRB,求實(shí)數(shù)m的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年福建省高三上學(xué)期第三次月考理科數(shù)學(xué)卷 題型:解答題
(本題滿(mǎn)分14分)
已知點(diǎn)是⊙:上的任意一點(diǎn),過(guò)作垂直軸于,動(dòng)點(diǎn)滿(mǎn)足。
(1)求動(dòng)點(diǎn)的軌跡方程;
(2)已知點(diǎn),在動(dòng)點(diǎn)的軌跡上是否存在兩個(gè)不重合的兩點(diǎn)、,使 (O是坐標(biāo)原點(diǎn)),若存在,求出直線(xiàn)的方程,若不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014屆江西省高一第二學(xué)期入學(xué)考試數(shù)學(xué) 題型:解答題
(本題滿(mǎn)分14分)已知函數(shù).
(1)求函數(shù)的定義域;
(2)判斷的奇偶性;
(3)方程是否有根?如果有根,請(qǐng)求出一個(gè)長(zhǎng)度為的區(qū)間,使
;如果沒(méi)有,請(qǐng)說(shuō)明理由?(注:區(qū)間的長(zhǎng)度為).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com