【題目】已知y= x3+bx2+(b+2)x+3是R上的單調增函數(shù),則b的取值是(
A.b<﹣1或b>2
B.b≤﹣2或b≥2
C.﹣1<b<2
D.﹣1≤b≤2

【答案】D
【解析】解:∵已知y= x3+bx2+(b+2)x+3 ∴y′=x2+2bx+b+2,
∵y= x3+bx2+(b+2)x+3是R上的單調增函數(shù),
∴x2+2bx+b+2≥0恒成立,
∴△≤0,即b2﹣b﹣2≤0,
則b的取值是﹣1≤b≤2.
故選D.
【考點精析】本題主要考查了函數(shù)的單調性和函數(shù)單調性的性質的相關知識點,需要掌握注意:函數(shù)的單調性是函數(shù)的局部性質;函數(shù)的單調性還有單調不增,和單調不減兩種;函數(shù)的單調區(qū)間只能是其定義域的子區(qū)間 ,不能把單調性相同的區(qū)間和在一起寫成其并集才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)的定義域為D,如果x∈D,y∈D,使得f(x)=﹣f(y)成立,則稱函數(shù)f(x)為“Ω函數(shù)”.給出下列四個函數(shù):
①y=sinx;
②y=2x;
③y=
④f(x)=lnx,
則其中“Ω函數(shù)”共有(
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】解答題
(1)從0,1,2,3,4,5這六個數(shù)字任取3個,問能組成多少個沒有重復數(shù)字的三位數(shù)?
(2)若(x6+3)(x2+ 5的展開式中含x10項的系數(shù)為43,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如今我們的互聯(lián)網(wǎng)生活日益豐富,除了可以很方便地網(wǎng)購,網(wǎng)上叫外賣也開始成為不少人日常生活中不可或缺的一部分.為了解網(wǎng)絡外賣在市的普及情況,市某調查機構借助網(wǎng)絡進行了關于網(wǎng)絡外賣的問卷調查,并從參與調查的網(wǎng)民中抽取了200人進行抽樣分析,得到下表:(單位:人)

(1)根據(jù)以上數(shù)據(jù),能否在犯錯誤的概率不超過0.15的前提下認為市使用網(wǎng)絡外賣的情況與性別有關?

(2)①現(xiàn)從所抽取的女網(wǎng)民中利用分層抽樣的方法再抽取5人,再從這5人中隨機選出3人贈送外賣優(yōu)惠券,求選出的3人中至少有2人經常使用網(wǎng)絡外賣的概率;

②將頻率視為概率,從市所有參與調查的網(wǎng)民中隨機抽取10人贈送禮品,記其中經常使用網(wǎng)絡外賣的人數(shù)為,求的數(shù)學期望和方差.

參考公式:,其中.

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)f(x)=ax2+bx+c和一次函數(shù)g(x)=﹣bx,其中a,b,c∈R且滿足a>b>c,f(1)=0.
(1)證明:函數(shù)f(x)與g(x)的圖象交于不同的兩點;
(2)若函數(shù)F(x)=f(x)﹣g(x)在[2,3]上的最小值為9,最大值為21,試求a,b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若對于x>0, ≤a恒成立,則a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ax2+2x+c(a、c∈N*)滿足:①f(1)=5;②6<f(2)<11.
(1)求a、c的值;
(2)若對任意的實數(shù)x∈[ , ],都有f(x)﹣2mx≤1成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若不等式2xlnx≥﹣x2+ax﹣3對x∈(0,+∞)恒成立,則實數(shù)a的取值范圍是(
A.(﹣∞,0)
B.(0,+∞)
C.(﹣∞,4]
D.[4,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正三棱柱中,側棱 , 分別為棱的中點, 分別為線段的中點.

(1)求證:直線平面;

(2)求二面角的余弦值.

查看答案和解析>>

同步練習冊答案