已知函數(shù)
(1)求函數(shù)的極值;
(2)設函數(shù)若函數(shù)上恰有兩個不同零點,求實數(shù)的取值范圍.

(1)處取得極小值.(2).

解析試題分析:(1)求導數(shù),解得函數(shù)的減區(qū)間;解,得函數(shù)的增區(qū)間
確定處取得最小值.
也可以通過“求導數(shù)、求駐點、研究函數(shù)的單調區(qū)間、確定極值(最值)” .
(2)遵循“求導數(shù)、求駐點、確定函數(shù)的單調性”明確函數(shù)的單調區(qū)間.
應用零點存在定理,建立不等式組,解之即得.
試題解析:(1)的定義域是,,得        3分
時,,時,,
所以處取得極小值         6分
(2)
所以,令
所以遞減,在遞增         9分
         11分
所以         13分
考點:應用導數(shù)研究函數(shù)的單調性、最(極)值,函數(shù)零點存在定理,簡單不等式組的解法.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),
(1)求函數(shù)的單調區(qū)間;
(2)若函數(shù)在區(qū)間的最小值為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)),其中
(1)若曲線在點處相交且有相同的切線,求的值;
(2)設,若對于任意的,函數(shù)在區(qū)間上的值恒為負數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知
(1)當時,求的最大值;
(2)求證:恒成立;
(3)求證:.(參考數(shù)據:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=x2,g(x)=2elnx(x>0)(e為自然對數(shù)的底數(shù)).
(1)求F(x)=f(x)-g(x)(x>0)的單調區(qū)間及最小值;
(2)是否存在一次函數(shù)y=kx+b(k,bR),使得f(x)≥kx十b且g(x)≤kx+b對一切x>0恒成立?若存在,求出該一次函數(shù)的表達式;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),。
(1)求函數(shù)的解析式;
(2)若對于任意,都有成立,求實數(shù)的取值范圍;
(3)設,且,求證:。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),函數(shù)是函數(shù)的導函數(shù).
(1)若,求的單調減區(qū)間;
(2)若對任意,,都有,求實數(shù)的取值范圍;
(3)在第(2)問求出的實數(shù)的范圍內,若存在一個與有關的負數(shù),使得對任意恒成立,求的最小值及相應的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=x3-ax-1.
(1)若a=3時,求f(x)的單調區(qū)間;
(2)若f(x)在實數(shù)集R上單調遞增,求實數(shù)a的取值范圍;
(3)是否存在實數(shù)a,使f(x)在(-1,1)上單調遞減?若存在,求出a的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

若函數(shù)f(x)=ax3x2x-5在(-∞,+∞)上單調遞增,求a的取值范圍.

查看答案和解析>>

同步練習冊答案