【題目】已知函數(shù))記x為的從小到大的第n()個極植點(diǎn),證明:
(1)數(shù)列的等比數(shù)列
(2)若則對一切恒成立
【答案】見詳解
【解析】(1)求導(dǎo),可知利用三角函數(shù)的知識可得的極植點(diǎn)為即可得證,其中令由得即
對若即則若即則因此,在區(qū)間與上的符號總是相反的,于是當(dāng)時f(x)取得極植所以此時易得f(xn)不等于0而是非零常數(shù)。故數(shù)列的首項(xiàng)為公比為的等比數(shù)列.
(2)分析題意的可知,問題等價于恒成立,構(gòu)造函數(shù),;利用導(dǎo)數(shù)判斷其單調(diào)性即可得證由(1)知于是對一切恒成立即恒成立,等價于①恒成立,因?yàn)椋?/span>)設(shè)g(t)=則令,得t=1
當(dāng)時因?yàn)間(t)在區(qū)間(0,1)上單調(diào)遞減
當(dāng)時所以g(t)在區(qū)間(0,1)上單調(diào)遞增
從而當(dāng)t=1時函數(shù)g(t)取得最小值g(1)=e因此,要是①恒成立只需即只需而當(dāng)時且于是且當(dāng)時因此對這一切,不等于1所以故①恒成立綜上所述若則對一切恒成立.
【考點(diǎn)精析】本題主要考查了導(dǎo)數(shù)的幾何意義和基本求導(dǎo)法則的相關(guān)知識點(diǎn),需要掌握通過圖像,我們可以看出當(dāng)點(diǎn)趨近于時,直線與曲線相切.容易知道,割線的斜率是,當(dāng)點(diǎn)趨近于時,函數(shù)在處的導(dǎo)數(shù)就是切線PT的斜率k,即;若兩個函數(shù)可導(dǎo),則它們和、差、積、商必可導(dǎo);若兩個函數(shù)均不可導(dǎo),則它們的和、差、積、商不一定不可導(dǎo)才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)= 與g(x)=a2lnx+b有公共點(diǎn),且在公共點(diǎn)處的切線方程相同,則實(shí)數(shù)b的最大值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)a,b,c,d均為正數(shù),且a+b=c+d,證明:(1)若ab > cd,則 +>+ ;(2) + > + 是|a-b| < |c-d|的充要條件
(1)(I)若abcd,則++
(2)(II)++是|a-b||c-d|的充要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2015·新課標(biāo)I卷)某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)x(單位:千元)對年銷售量y(單位:t)和年利潤z(單位:千元)的影響,對近8年的宣傳費(fèi)xi和年銷售量yi=1;2…8數(shù)據(jù)作了初步處理,得到下面的散點(diǎn)圖及一些統(tǒng)計量的值.
46.6 | 56.3 | 6.8 | 289.8 | 1.6 | 1469 | 108.8 |
表中wi=,=
(1)根據(jù)散點(diǎn)圖判斷,y=a+bx與y=c+d,哪一個適宜作為年銷售量y關(guān)于年宣傳費(fèi)x的回歸方程類型(給出判斷即可,不必說明理由);
(2)根據(jù)(I)的判斷結(jié)果及表中數(shù)據(jù),建立y關(guān)于x的回歸方程;
(3)已知這種產(chǎn)品的年利潤z與x , y的關(guān)系為z=0.2y-x,根據(jù)(II)的結(jié)果回答下列問題:
(i)當(dāng)年宣傳費(fèi)x=90時,年銷售量及年利潤的預(yù)報值時多少?
(ii)當(dāng)年宣傳費(fèi)x為何值時,年利潤的預(yù)報值最大?
附:對于一組數(shù)據(jù)(u1,v1),(u2,v2),……,(un,vn),其回歸線v=的斜率和截距的最小二乘估計分別為:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2015·四川)設(shè)數(shù)列{an}的前n項(xiàng)和Sn=2an-a1 , 且a1, a2+1, a3成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)記數(shù)列{}的前n項(xiàng)和Tn , 求Tn。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
A.(1,3)
B.(1, 4)
C.(2,3)
D.(2,4)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2015·陜西)在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(t為參數(shù)).以原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,c的極坐標(biāo)方程為=2sin .
(1)寫出c的直角坐標(biāo)方程;
(2)P為直線l上一動點(diǎn),當(dāng)P到圓心C的距離最小時,求P的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)用“五點(diǎn)法”畫函數(shù)在某一個周期內(nèi)的圖象時,列表并填入了部分?jǐn)?shù)據(jù),如下表:
0 | |||||
x | |||||
0 | 5 | -5 | 0 |
(Ⅰ)請將上表數(shù)據(jù)補(bǔ)充完整,填寫在答題卡上相應(yīng)位置,并直接寫出函數(shù)的解析式;
(Ⅱ)將圖象上所有點(diǎn)向左平行移動個單位長度,得到的圖象. 若圖象的一個對稱中心為,求的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com