【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)(單位:千元)對(duì)年銷(xiāo)售量y(單位:t)和年利潤(rùn)z(單位:千元)的影響,對(duì)近8年的年宣傳費(fèi)和年銷(xiāo)售量()數(shù)據(jù)作了初步處理,得到下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.
46.6 | 563 | 6.8 | 289.8 | 1.6 | 1.469 | 108.8 |
表中,
(1)根據(jù)散點(diǎn)圖判斷,與哪一個(gè)適宜作為年銷(xiāo)售量y關(guān)于年宣傳費(fèi)x的回歸方類(lèi)型?給出判斷即可,不必說(shuō)明理由
(2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),建立y關(guān)于x的回歸方程;
(3)已知這種產(chǎn)品的年利潤(rùn)z與x、y的關(guān)系為根據(jù)(2)的結(jié)果回答下列問(wèn)題:
①年宣傳費(fèi)時(shí),年銷(xiāo)售量及年利潤(rùn)的預(yù)報(bào)值是多少?
②年宣傳費(fèi)x為何值時(shí),年利潤(rùn)的預(yù)報(bào)值最大?
附:對(duì)于一組數(shù)據(jù),其回歸線(xiàn)的斜率和截距的最小二乘估計(jì)分別為:,.
【答案】(1)適宜;(2);(3)①576.6,,6.32;②
【解析】
(1)由圖中散點(diǎn)的大致形狀,可以判斷適宜作為年銷(xiāo)售量y關(guān)于年宣傳費(fèi)x的回歸方程類(lèi)型;
(2)令,先建立y關(guān)于w的線(xiàn)性回歸方程,進(jìn)而可得到y關(guān)于x的回歸方程.
(3)①由(2),可求出時(shí),年銷(xiāo)售量y的預(yù)報(bào)值,再結(jié)合年利潤(rùn),計(jì)算即可;
②根據(jù)(2)的結(jié)果,可求得年利潤(rùn)z的預(yù)報(bào)值,求出最值即可.
(1)由圖中散點(diǎn)的大致形狀,可以判斷適宜作為年銷(xiāo)售量y關(guān)于年宣傳費(fèi)x的回歸方程類(lèi)型.
(2)令,先建立y關(guān)于w的線(xiàn)性回歸方程,
由于,,
所以y關(guān)于w的線(xiàn)性回歸方程為,
因此y關(guān)于x的回歸方程為.
(3)①由(2)知,當(dāng)時(shí),年銷(xiāo)售量y的預(yù)報(bào)值,
年利潤(rùn)z的預(yù)報(bào)值.
②根據(jù)(2)的結(jié)果可知,年利潤(rùn)z的預(yù)報(bào)值
,
當(dāng)時(shí),即當(dāng)時(shí),取得最大值.
故年宣傳費(fèi)為千元時(shí),年利潤(rùn)的預(yù)報(bào)值最大.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】針對(duì)某新型病毒,某科研機(jī)構(gòu)已研發(fā)出甲乙兩種疫苗,為比較兩種疫苗的效果,選取100名志愿者,將他們隨機(jī)分成兩組,每組50人.第一組志愿者注射甲種疫苗,第二組志愿者注射乙種疫苗,經(jīng)過(guò)一段時(shí)間后,對(duì)這100名志愿者進(jìn)行該新型病毒抗體檢測(cè),發(fā)現(xiàn)有的志愿者未產(chǎn)生該新型病毒抗體,在未產(chǎn)生該新型病毒抗體的志愿者中,注射甲種疫苗的志愿者占.
產(chǎn)生抗體 | 未產(chǎn)生抗體 | 合計(jì) | |
甲 | |||
乙 | |||
合計(jì) |
(1)根據(jù)題中數(shù)據(jù),完成列聯(lián)表;
(2)根據(jù)(1)中的列聯(lián)表,判斷能否有的把握認(rèn)為甲乙兩種疫苗的效果有差異.
參考公式:,其中.
參考數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】盲盒里面通常裝的是動(dòng)漫、影視作品的周邊,或者設(shè)計(jì)師單獨(dú)設(shè)計(jì)出來(lái)的玩偶.由于盒子上沒(méi)有標(biāo)注,購(gòu)買(mǎi)者只有打開(kāi)才會(huì)知道自己買(mǎi)到了什么,因此這種驚喜吸引了眾多年輕人,形成了“盲盒經(jīng)濟(jì)”.某款盲盒內(nèi)可能裝有某一套玩偶的、、三種樣式,且每個(gè)盲盒只裝一個(gè).
(1)若每個(gè)盲盒裝有、、三種樣式玩偶的概率相同.某同學(xué)已經(jīng)有了樣式的玩偶,若他再購(gòu)買(mǎi)兩個(gè)這款盲盒,恰好能收集齊這三種樣式的概率是多少?
(2)某銷(xiāo)售網(wǎng)點(diǎn)為調(diào)查該款盲盒的受歡迎程度,隨機(jī)發(fā)放了200份問(wèn)卷,并全部收回.經(jīng)統(tǒng)計(jì),有的人購(gòu)買(mǎi)了該款盲盒,在這些購(gòu)買(mǎi)者當(dāng)中,女生占;而在未購(gòu)買(mǎi)者當(dāng)中,男生女生各占.請(qǐng)根據(jù)以上信息填寫(xiě)下表,并分析是否有的把握認(rèn)為購(gòu)買(mǎi)該款盲盒與性別有關(guān)?
女生 | 男生 | 總計(jì) | |
購(gòu)買(mǎi) | |||
未購(gòu)買(mǎi) | |||
總計(jì) |
參考公式:,其中.
參考數(shù)據(jù):
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(3)該銷(xiāo)售網(wǎng)點(diǎn)已經(jīng)售賣(mài)該款盲盒6周,并記錄了銷(xiāo)售情況,如下表:
周數(shù) | 1 | 2 | 3 | 4 | 5 | 6 |
盒數(shù) | 16 | ______ | 23 | 25 | 26 | 30 |
由于電腦故障,第二周數(shù)據(jù)現(xiàn)已丟失,該銷(xiāo)售網(wǎng)點(diǎn)負(fù)責(zé)人決定用第4、5、6周的數(shù)據(jù)求線(xiàn)性回歸方程,再用第1、3周數(shù)據(jù)進(jìn)行檢驗(yàn).
①請(qǐng)用4、5、6周的數(shù)據(jù)求出關(guān)于的線(xiàn)性回歸方程;
(注:,)
②若由線(xiàn)性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2盒,則認(rèn)為得到的線(xiàn)性回歸方程是可靠的,試問(wèn)①中所得的線(xiàn)性回歸方程是否可靠?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知.
(1)設(shè)是的極值點(diǎn),求實(shí)數(shù)的值,并求的單調(diào)區(qū)間:
(2)時(shí),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線(xiàn)與軸有唯一公共點(diǎn).
(Ⅰ)求實(shí)數(shù)的取值范圍;
(Ⅱ)曲線(xiàn)在點(diǎn)處的切線(xiàn)斜率為.若兩個(gè)不相等的正實(shí)數(shù),滿(mǎn)足,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】中國(guó)有十二生肖,又叫十二屬相,每一個(gè)人的出生年份對(duì)應(yīng)了十二種動(dòng)物(鼠、牛、虎、兔、龍、蛇、馬、羊、猴、雞、狗、豬)中的一種.現(xiàn)有十二生肖的吉祥物各一個(gè),已知甲同學(xué)喜歡牛、馬和猴,乙同學(xué)喜歡牛、狗和羊,丙同學(xué)所有的吉祥物都喜歡,讓甲乙丙三位同學(xué)依次從中選一個(gè)作為禮物珍藏,若各人所選取的禮物都是自己喜歡的,則不同的選法有( )
A.50種B.60種C.80種D.90種
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正項(xiàng)數(shù)列滿(mǎn)足,則下列正確的是( )
A.當(dāng)時(shí),遞增,遞增
B.當(dāng)時(shí),遞增,遞減
C.當(dāng)時(shí),遞增,遞減
D.當(dāng)時(shí),遞減,遞減
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】π為圓周率,e=2.718 28…為自然對(duì)數(shù)的底數(shù).
(1)求函數(shù)f(x)= 的單調(diào)區(qū)間;
(2) 求e3,3e,eπ,πe,3π,π3這6個(gè)數(shù)中的最大數(shù)與最小數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C:過(guò)點(diǎn)M(2,3),點(diǎn)A為其左頂點(diǎn),且AM的斜率為 ,
(1)求C的方程;
(2)點(diǎn)N為橢圓上任意一點(diǎn),求△AMN的面積的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com