A
分析:由函數(shù)f(x)的導(dǎo)函數(shù)f
′(x)>0,求出函數(shù)f(x)的增區(qū)間,然后根據(jù)伸縮變換得到f(ax)的減區(qū)間,再通過函數(shù)圖象平移求得函數(shù)f(ax-1)(a<0)的減區(qū)間.
解答:由f'(x)=-x(x+1)>0,得-1<x<0,所以函數(shù)f(x)(-1,0)上為增函數(shù),又a<0,所以-a>0,所以函數(shù)f(-ax)在
上為增函數(shù),
f(ax)=f[-(-ax)]在(0,-
)上為減函數(shù),又f(ax-1)=f[a(x-
)]=
,所以函數(shù)f(ax-1)是把函數(shù)f(ax)向左平移
個單位得到的,
所以,
.
故選A.
點(diǎn)評:本題考查了利用函數(shù)導(dǎo)函數(shù)的符號研究函數(shù)的單調(diào)性,即當(dāng)導(dǎo)函數(shù)大于0時原函數(shù)單調(diào)遞增,當(dāng)導(dǎo)函數(shù)小于0時原函數(shù)單調(diào)遞減,解答本題的關(guān)鍵是熟練函數(shù)圖象的伸縮和平移變換..