(2009•淮安模擬)已知銳角△ABC中內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且c=6,向量
s
=(2sinC,-
3
),
t
=(cos2C,2cos2
C
2
-1),且
s
t

(1)求C的大小;
(2)若sinA=
1
3
,求sin(
π
3
-B)
的值.
分析:(1)由
s
t
,得2sinC(2cos2
C
2
-1)=-
3
cos2C,可求得tan2C,從而可得2C,進(jìn)而得到C;
(2)由C=
π
3
,得A=
3
-B
,則sin(
π
3
-B)=sin[(
3
-B)-
π
3
]=sin(A-
π
3
)
,利用差角的正弦公式可求;
解答:(1)∵
s
t
,∴2sinC(2cos2
C
2
-1)=-
3
cos2C,
sin2C=-
3
cos2C
,即tan2C=-
3
,
又∵C為銳角,∴2C∈(0,π),∴2C=
3
,∴C=
π
3
;
(2)∵C=
π
3
,∴A=
3
-B
,
sin(
π
3
-B)=sin[(
3
-B)-
π
3
]=sin(A-
π
3
)
,
sinA=
1
3
,且A為銳角,∴cosA=
2
2
3
,
sin(
π
3
-B)=sin(A-
π
3
)=sinAcos
π
3
-cosAsin
π
3
=
1-2
6
6
;
點(diǎn)評(píng):本題考查平面向量共線的充要條件、和差角公式,考查學(xué)生的運(yùn)算求解能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2009•淮安模擬)已知函數(shù)f(x)=lnx-x+1,x∈(0,+∞).
(1)求f(x)的單調(diào)區(qū)間和極值;
(2)設(shè)a≥1,函數(shù)g(x)=x2-3ax+2a2-5,若對(duì)于任意x0∈(0,1),總存在x1∈(0,1),使得f(x1)=g(x0)成立,求a的取值范圍;
(3)對(duì)任意x∈(0,+∞),求證:
1
x+1
<ln
x+1
x
1
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•淮安模擬)若關(guān)于x的不等式x2+9+|x2-3x|≥kx在[1,5]上恒成立,則實(shí)數(shù)k的范圍為
(-∞,6]
(-∞,6]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•淮安模擬)已知U為實(shí)數(shù)集,集合M={x|0<x<2},N={x|y=
x-1
}
,則M∩(?UN)=
{x|0<x<1}
{x|0<x<1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•淮安模擬)若向圓x2+y2=4所圍成的區(qū)域內(nèi)隨機(jī)地丟一粒豆子,則豆子落在直線x-y+2=0上方的概率是
1
4
-
1
1
4
-
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•淮安模擬)某同學(xué)在求方程lgx=2-x的近似解(精確到0.1)時(shí),設(shè)f(x)=lgx+x-2,發(fā)現(xiàn)f(1)<0,f(2)>0,他用“二分法”又取了4個(gè)值,通過計(jì)算得到方程的近似解為x≈1.8,那么他所取的4個(gè)值中的第二個(gè)值為
1.75
1.75

查看答案和解析>>

同步練習(xí)冊(cè)答案