已知數(shù)列{an}和{bn}滿足a1=b1,且對(duì)任意n∈N*都有an+bn=1,
an+1
an
=
bn
1-
a
2
n

(1)判斷數(shù)列{
1
an
}
是否為等差數(shù)列,并說明理由;
(2)證明:(1+ann+1•bnn>1.
分析:(1)根據(jù)
an+1
an
=
bn
1-
a
n
2
,把a(bǔ)n+bn=1代入整理得
1
an+1
=
1
an
+1
,進(jìn)而根據(jù)等差數(shù)列的定義判斷出數(shù)列{
1
an
}
為等差數(shù)列.
(2)根據(jù)an+bn=1,a1=
1
2
求得a1和b1.進(jìn)而根據(jù)(1)中
1
an
求得an,進(jìn)而求得bn,進(jìn)而可知要證不等式(1+ann+1•bnn>1,即(1+
1
n+1
)n+1•(
n
n+1
)n>1
,令f(x)=
lnx
x-1
(x>1)
,對(duì)函數(shù)f(x)進(jìn)行求導(dǎo),再令g(x)=
x-1
x
-lnx
,對(duì)函數(shù)g(x)進(jìn)行求導(dǎo),進(jìn)而利用導(dǎo)函數(shù)判斷f(x)和g(x)的單調(diào)性,進(jìn)而利用函數(shù)的單調(diào)性證明原式.
解答:(1)解:數(shù)列{
1
an
}
為等差數(shù)列.
理由如下:
∵對(duì)任意n∈N*都有an+bn=1,
an+1
an
=
bn
1-
a
2
n
,
an+1
an
=
bn
1-
a
2
n
=
1-an
1-
a
2
n
=
1
1+an

1
an+1
=
1
an
+1
,即
1
an+1
-
1
an
=1

∴數(shù)列{
1
an
}
是首項(xiàng)為
1
a1
,公差為1的等差數(shù)列.
(2)證明:∵an+bn=1,a1=
1
2

∴a1=b1=
1
2

由(1)知
1
an
=2+(n-1)=n+1

an=
1
n+1
,bn=1-an=
n
n+1

所證不等式(1+ann+1•bnn>1,即(1+
1
n+1
)n+1•(
n
n+1
)n>1
,
也即證明(1+
1
n+1
)n+1>(1+
1
n
)n

f(x)=
lnx
x-1
(x>1)
,
f(x)=
x-1
x
-lnx
(x-1)2

再令g(x)=
x-1
x
-lnx

g(x)=
1
x2
-
1
x
=
1-x
x2

當(dāng)x>1時(shí),g′(x)<0,
∴函數(shù)g(x)在[1,+∞)上單調(diào)遞減.
∴當(dāng)x>1時(shí),g(x)<g(1)=0,即
x-1
x
-lnx<0

∴當(dāng)x>1時(shí),f(x)=
x-1
x
-lnx
(x-1)2
<0.
∴函數(shù)f(x)=
lnx
x-1
在(1,+∞)上單調(diào)遞減.
1<1+
1
n+1
<1+
1
n

f(1+
1
n+1
)>f(1+
1
n
)

ln(1+
1
n+1
)
1+
1
n+1
-1
ln(1+
1
n
)
1+
1
n
-1

ln(1+
1
n+1
)n+1>ln(1+
1
n
)n

(1+
1
n+1
)n+1>(1+
1
n
)n

∴(1+ann+1•bnn>1成立.
點(diǎn)評(píng):本小題主要考查導(dǎo)數(shù)及其應(yīng)用、數(shù)列、不等式等知識(shí),考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,以及抽象概括能力、推理論證能力、運(yùn)算求解能力和創(chuàng)新意識(shí)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}和{bn}滿足:a=1,a1=2,a2>0,bn=
a1an+1
(n∈N*)
.且{bn}是以
a為公比的等比數(shù)列.
(Ⅰ)證明:aa+2=a1a2
(Ⅱ)若a3n-1+2a2,證明數(shù)例{cx}是等比數(shù)例;
(Ⅲ)求和:
1
a1
+
1
a2
+
1
a3
+
1
a4
+
+
1
a2n-1
+
1
a2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}和{bn}滿足a1=m,an+1an+n,bn=an-
2n
3
+
4
9

(1)當(dāng)m=1時(shí),求證:對(duì)于任意的實(shí)數(shù)λ,{an}一定不是等差數(shù)列;
(2)當(dāng)λ=-
1
2
時(shí),試判斷{bn}是否為等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}和等比數(shù)列{bn}滿足:a1=b1=4,a2=b2=2,a3=1,且數(shù)列{an+1-an}是等差數(shù)列,n∈N*,
(Ⅰ)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(Ⅱ)問是否存在k∈N*,使得ak-bk∈(
12
,3]
?若存在,求出k的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}和{bn}滿足:a1=λ,an+1=
23
an+n-4,bn=(-1)n(an-3n+21)其中λ為實(shí)數(shù),且λ≠-18,n為正整數(shù).
(Ⅰ)求證:{bn}是等比數(shù)列;
(Ⅱ)設(shè)0<a<b,Sn為數(shù)列{bn}的前n項(xiàng)和.是否存在實(shí)數(shù)λ,使得對(duì)任意正整數(shù)n,都有a<Sn<b?若存在,求λ的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•孝感模擬)已知數(shù)列{an}和{bn}滿足a1=1且bn=1-2an,bn+1=
bn
1-4 
a
2
n

(I)證明:數(shù)列{
1
an
}是等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求使不等式(1+a1)(1+a2)…(1+an)≥k
1
b2b3bnbn+1 
對(duì)任意正整數(shù)n都成立的最大實(shí)數(shù)k.

查看答案和解析>>

同步練習(xí)冊(cè)答案