【題目】設(shè)為奇函數(shù),且實(shí)數(shù)。

(1)求的值;

(2)判斷函數(shù)的單調(diào)性,并寫(xiě)出證明過(guò)程;

(3)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍。

【答案】(1) (2) 函數(shù)上單調(diào)遞增(3)

【解析】試題分析:(1)由為奇函數(shù),滿足f(﹣x)+f(x)=0,代入可得a的值;

(2)對(duì)任意的,且,結(jié)合對(duì)數(shù)運(yùn)算性質(zhì),判斷f(x1)﹣f(x2)的符號(hào),進(jìn)而可得函數(shù)f(x)在x(1,+∞)時(shí)的單調(diào)性;

(3)若對(duì)于區(qū)間上的每一個(gè)x值,不等式恒成立, ,分析的單調(diào)性并求出最值,可得實(shí)數(shù)m取值范圍.

試題解析:

(1) ,得,有,根據(jù)奇函數(shù)的定義域關(guān)于原點(diǎn)對(duì)稱,有,解得。

(2)函數(shù)上單調(diào)遞增。證明如下:

對(duì)任意的, ,且,由

,

……(*),

,所以有

,有,又因?yàn)?/span>,有(*)式

為負(fù),因此,即, ,

所以,函數(shù)上單調(diào)遞增。

(3)當(dāng)時(shí),由不等式恒成立,有

(2)上單調(diào)遞增,又因?yàn)?/span>上單調(diào)遞增,就有

上單調(diào)遞增,當(dāng)時(shí), 上單調(diào)遞增。要使恒成立,只需,解得,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為迎接黨的“十九大”勝利召開(kāi)與響應(yīng)國(guó)家交給的“提速降費(fèi)”任務(wù),某市移動(dòng)公司欲提供新的資費(fèi)套餐(資費(fèi)包含手機(jī)月租費(fèi)、手機(jī)撥打電話費(fèi)與家庭寬帶上網(wǎng)費(fèi))。其中一組套餐變更如下:

原方案資費(fèi)

手機(jī)月租費(fèi)

手機(jī)撥打電話

家庭寬帶上網(wǎng)費(fèi)(50M)

18元/月

0.2元/分鐘

50元/月

新方案資費(fèi)

手機(jī)月租費(fèi)

手機(jī)撥打電話

家庭寬帶上網(wǎng)費(fèi)(50M)

58元/月

前100分鐘免費(fèi),

超過(guò)部分元/分鐘(>0.2

免費(fèi)

(1)客戶甲(只有一個(gè)手機(jī)號(hào)和一個(gè)家庭寬帶上網(wǎng)號(hào))欲從原方案改成新方案,設(shè)其每月手機(jī)通話時(shí)間為分鐘(),費(fèi)用原方案每月資費(fèi)-新方案每月資費(fèi),寫(xiě)出關(guān)于的函數(shù)關(guān)系式;

(2)經(jīng)過(guò)統(tǒng)計(jì),移動(dòng)公司發(fā)現(xiàn),選這組套餐的客戶平均月通話時(shí)間分鐘,為能起到降費(fèi)作用,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)橢圓C的兩個(gè)焦點(diǎn)是F1、F2 , 過(guò)F1的直線與橢圓C交于P、Q,若|PF2|=|F1F2|,且5|PF1|=6|F1Q|,則橢圓的離心率為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為迎接2017年“雙11”,“雙12”購(gòu)物狂歡節(jié)的來(lái)臨,某青花瓷生產(chǎn)廠家計(jì)劃每天生產(chǎn)湯碗、花瓶、茶杯這三種瓷器共100個(gè),生產(chǎn)一個(gè)湯碗需5分鐘,生產(chǎn)一個(gè)花瓶需7分鐘,生產(chǎn)一個(gè)茶杯需4分鐘,已知總生產(chǎn)時(shí)間不超過(guò)10小時(shí).若生產(chǎn)一個(gè)湯碗可獲利潤(rùn)5元,生產(chǎn)一個(gè)花瓶可獲利潤(rùn)6元,生產(chǎn)一個(gè)茶杯可獲利潤(rùn)3元.
(1)使用每天生產(chǎn)的湯碗個(gè)數(shù)x與花瓶個(gè)數(shù)y表示每天的利潤(rùn)ω(元);
(2)怎樣分配生產(chǎn)任務(wù)才能使每天的利潤(rùn)最大,最大利潤(rùn)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐中,平面平面, 為等邊三角形, , 分別為的中點(diǎn).

(1)求證: 平面.

(2)求證:平面平面.

(3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x3+ax2+bx+a2(a、b∈R)
(1)若函數(shù)f(x)在x=1處有極值為10,求b的值;
(2)若a=﹣4,f(x)在x∈[0,2]上單調(diào)遞增,求b的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E、F分別是AC、AD上的動(dòng)點(diǎn),且

(1)求證:不論為何值,總有平面BEF⊥平面ABC;

(2)當(dāng)λ為何值時(shí),平面BEF⊥平面ACD ?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】語(yǔ)句p:曲線x2﹣2mx+y2﹣4y+2m+7=0表示圓;語(yǔ)句q:曲線 + =1表示焦點(diǎn)在x軸上的橢圓,若p∨q為真命題,¬p為真命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某廠生產(chǎn)某種零件,每個(gè)零件的成本為40元,出廠單價(jià)定為60元.該廠為鼓勵(lì)銷售商訂購(gòu),決定當(dāng)一次訂購(gòu)量超過(guò)100個(gè)時(shí),每多訂購(gòu)一個(gè),訂購(gòu)的全部零件的出廠單價(jià)就降低0.02元,但實(shí)際出廠單價(jià)不能低于51元.

(1)當(dāng)一次訂購(gòu)量為多少個(gè)時(shí),零件的實(shí)際出廠單價(jià)恰降為51元?

(2)設(shè)一次訂購(gòu)量為個(gè),零件的實(shí)際出廠單價(jià)為元,寫(xiě)出函數(shù)的表達(dá)式;

(3)當(dāng)銷售商一次訂購(gòu)500個(gè)零件時(shí),該廠獲得的利潤(rùn)是多少元? (工廠售出一個(gè)零件的利潤(rùn)=實(shí)際出廠單價(jià)-單件成本)

查看答案和解析>>

同步練習(xí)冊(cè)答案