【題目】如圖所示,正三角形所在平面與梯形所在平面垂直, , , 為棱的中點.
(1)求證: 平面;
(2)若直線與平面所成的角為30°,求三棱錐的體積.
【答案】(1)見解析;(2) .
【解析】試題分析:(1)先根據(jù)面面垂直性質(zhì)定理轉(zhuǎn)化為線面垂直平面,,再利用線面垂直性質(zhì)定理得線線垂直,由正三角形性質(zhì)得,最后根據(jù)線面垂直判定定理得結(jié)論,(2)先根據(jù)線面垂直平面確定直線與平面所成的角的平面角為,求出點到平面的距離,根據(jù)為的中點,可得點到平面的距離為點到平面的距離一半,利用錐體體積公式可得,再根據(jù)等體積法可得.
試題解析:(1)∵平面平面,平面平面,
且平面,
∴平面,
∴,
又∵為正三角形, 為的中點,
∴,
又∵平面,
∴平面;
(2)取中點,連接,
易知平面,∴與平面所成的角為,
∵中, ,∴,
∵為正三角形, 為的中點,
∴且,
∵平面平面,∴平面,
又∵為的中點,∴點到平面的距離為,
∵,
∴,
∴.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在公差為d的等差數(shù)列{an}中,已知a1=10,5a1a3=(2a2+2)2 .
(1)求d和an的值;
(2)若d<0,求|a1|+|a2|+|a3|+…+|a2021|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(, 是自然對數(shù)的底數(shù)).
(1)當(dāng)時,求曲線在點處的切線方程;
(2)當(dāng)時,不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= sin cos +sin2 (ω>0,0<φ< ).其圖象的兩個相鄰對稱中心的距離為 ,且過點( ,1).
(1)函數(shù)f(x)的解析式;
(2)在△ABC中,角A,B,C所對的邊分別為a,b,c.已知 = .且f(A)= ,求角C的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)實數(shù)滿足,若目標(biāo)函數(shù)的最大值為6,則的最小值為( )
A. B. C. D. 0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校為了解學(xué)生在課外讀物方面的支出情況,抽取了n名同學(xué)進(jìn)行調(diào)查,結(jié)果顯示這些同學(xué)的支出都在[10,50)(單位:元),其中支出在[30,50)(單位:元)的同學(xué)有67人,其頻率分布直方圖如圖所示,則n的值為( )
A. 100 B. 120 C. 130 D. 390
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】農(nóng)科院的專家為了了解新培育的甲、乙兩種麥苗的長勢情況,從甲、乙兩種麥苗的試驗田中各抽取6株麥苗測量麥苗的株高,數(shù)據(jù)如下:(單位:cm)
甲:9,10,11,12,10,20
乙:8,14,13,10,12,21.
(1)在給出的方框內(nèi)繪出所抽取的甲、乙兩種麥苗株高的莖葉圖;
(2)分別計算所抽取的甲、乙兩種麥苗株高的平均數(shù)與方差,并由此判斷甲、乙兩種麥苗的長勢情況.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】解答
(1)在區(qū)間[1,3]上任取兩整數(shù)a、b,求二次方程x2+2ax+b2=0有實數(shù)根的概率.
(2)在區(qū)間[1,3]上任取兩實數(shù)a、b,求二次方程x2+2ax+b2=0有實數(shù)根的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com