函數(shù)f(x)=ln(x2-x)的定義域?yàn)椋ā 。?/div>
A、(0,1)
B、[0,1]
C、(-∞,0)∪(1,+∞)
D、(-∞,0]∪[1,+∞)
考點(diǎn):函數(shù)的定義域及其求法
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)成立的條件,即可求出函數(shù)的定義域.
解答: 解:要使函數(shù)有意義,則x2-x>0,即x>1或x<0,
故函數(shù)的定義域?yàn)椋?∞,0)∪(1,+∞),
故選:C
點(diǎn)評(píng):本題主要考查函數(shù)定義域的求法,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)(x∈R),對(duì)函數(shù)y=g(x)(x∈I),定義g(x)關(guān)于f(x)的“對(duì)稱函數(shù)”為函數(shù)y=h(x)(x∈I),y=h(x)滿足:對(duì)任意x∈I,兩個(gè)點(diǎn)(x,h(x)),(x,g(x))關(guān)于點(diǎn)(x,f(x))對(duì)稱.若h(x)是g(x)=
4-x2
關(guān)于f(x)=3x+b的“對(duì)稱函數(shù)”,且h(x)>g(x)恒成立,則實(shí)數(shù)b的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知i是虛數(shù)單位,計(jì)算
1-i
(1+i)2
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)一個(gè)容量為N的總體抽取容量為n的樣本,當(dāng)選取簡單隨機(jī)抽樣、系統(tǒng)抽樣和分層抽樣三種不同方法抽取樣本時(shí),總體中每個(gè)個(gè)體被抽中的概率分別為P1,P2,P3,則( 。
A、P1=P2<P3
B、P2=P3<P1
C、P1=P3<P2
D、P1=P2=P3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=|x+1|+|2x+a|的最小值為3,則實(shí)數(shù)a的值為( 。
A、5或8B、-1或5
C、-1或-4D、-4或8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示的程序框圖,如果輸入的t∈[-2,2],則輸出的S屬于( 。
A、[-6,-2]
B、[-5,-1]
C、[-4,5]
D、[-3,6]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

閱讀如圖的程序框圖,則輸出的S為( 。
A、6B、10C、14D、30

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若α,β為兩個(gè)不同的平面,m、n為不同直線,下列推理:
①若α⊥β,m⊥α,n⊥β,則直線m⊥n;
②若直線m∥平面α,直線n⊥直線m,則直線n⊥平面α;
③若直線m∥n,m⊥α,n?β,則平面α⊥平面β;
④若平面α∥平面β,直線m⊥平面β,n?α,則直線m⊥直線n;
其中正確說法的序號(hào)是( 。
A、③④B、①③④
C、①②③④D、①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a,b,x,y∈R,且a2+b2=1,x2+y2=1,試證:|ax+by|≤1.

查看答案和解析>>

同步練習(xí)冊(cè)答案