已知數(shù)列滿足:

(Ⅰ)求;

(Ⅱ)設(shè),求數(shù)列的通項公式;

(Ⅲ)設(shè),不等式恒成立時,求實數(shù)的取值范圍.

 

【答案】

(Ⅰ)

  ∵      ∴……3分

(Ⅱ)∵  ∴

∴數(shù)列{}是以-4為首項,-1為公差的等差數(shù)列.∴. --------6分

(Ⅲ)由于,所以,從而--------7分

   ∴--------8分

由條件可知恒成立即可滿足條件,設(shè)

時,恒成立

時,由二次函數(shù)的性質(zhì)知不可能成立

時,對稱軸 為單調(diào)遞減函數(shù).

,∴  ∴恒成立。綜上知:時,恒成立

【解析】略

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知數(shù)列滿足a1=1,an+1=2an+1(n∈N*)
(1)求證:數(shù)列{an+1}是等比數(shù)列;
(2)求{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)F(x)=
3x-2
2x-1
,(x≠
1
2
)

(I)求F(
1
2013
)+F(
2
2013
)+F(
3
2013
)+…+F(
2012
2013
)
;
(II)已知數(shù)列滿足a1=2,an+1=F(an),求數(shù)列{an}的通項公式;
(Ⅲ) 求證:a1a2a3…an
2n+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•蕪湖三模)已知數(shù)列滿足a1+2a2+…+2n-1an=
n
2
(n∈N+).
(Ⅰ)求數(shù)列{an}的通項;
(Ⅱ)若bn=
n
an
,求數(shù)列{bn}的前n和Sn;
(Ⅲ)求證Sn≥n2+2n-1

查看答案和解析>>

科目:高中數(shù)學 來源:2013屆度吉林省吉林市高二上學期期末理科數(shù)學試卷 題型:選擇題

已知數(shù)列滿足,則此數(shù)列的通項等于

A.       B.        C.            D.

 

查看答案和解析>>

同步練習冊答案