【題目】如圖,已知橢圓,分別為其左、右焦點,過的直線與此橢圓相交于兩點,且的周長為8,橢圓的離心率為

(Ⅰ)求橢圓的方程;

(Ⅱ)在平面直角坐標系中,已知點與點,過的動直線(不與軸平行)與橢圓相交于兩點,點是點關(guān)于軸的對稱點.求證:

i三點共線.

ii

【答案】(Ⅰ);(Ⅱ)詳見解析.

【解析】

由三角形的周長可得,根據(jù)離心率可得,即可求出,則橢圓方程可求;當直線l的斜率不存在時,AB分別為橢圓短軸兩端點,滿足Q,A,三點共線當直線l的斜率存在時,設(shè)直線方程為,聯(lián)立直線方程與橢圓方程,化為關(guān)于x的一元二次方程,然后利用向量證明.可知Q,A,三點共線,即,問題得以證明.

解:的周長為8,,即,

,,

故橢圓C的方程為

證明:當直線l的斜率不存在時,AB分別為橢圓短軸兩端點,滿足QA,三點共線.

當直線l的斜率存在時,設(shè)直線方程為,

聯(lián)立,得

設(shè),,則

,

,

共線,則QA,三點共線.

可知Q,A,三點共線,

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知點,點,分別為橢圓的左右頂點,直線于點,是等腰直角三角形,且

(1)求的方程;

(2)設(shè)過點的動直線相交于兩點,為坐標原點.當為直角時,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線E,圓C

若過拋物線E的焦點F的直線l與圓C相切,求直線l方程;

的條件下,若直線l交拋物線EA,B兩點,x軸上是否存在點使為坐標原點?若存在,求出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直三棱柱ABCA1B1C1中,∠BAC90°,AB=AC=2,AA1=6,點E、F分別在棱BB1CC1上,且BEBB1C1FCC1.

1)求異面直線AEA1F所成角的大。

2)求平面AEF與平面ABC所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直角梯形,,,點的中點,現(xiàn)沿將平面折起,設(shè).

1)當為直角時,求直線與平面所成角的大;

2)當為多少時,三棱錐的體積為;

3)在(2)的條件下,求此時二面角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在某區(qū)“創(chuàng)文明城區(qū)”(簡稱“創(chuàng)城”)活動中,教委對本區(qū)四所高中學校按各校人數(shù)分層抽樣,隨機抽查了100人,將調(diào)查情況進行整理后制成下表:

學校

抽查人數(shù)

50

15

10

25

“創(chuàng)城”活動中參與的人數(shù)

40

10

9

15

(注:參與率是指:一所學!皠(chuàng)城”活動中參與的人數(shù)與被抽查人數(shù)的比值)假設(shè)每名高中學生是否參與”創(chuàng)城”活動是相互獨立的.

(1)若該區(qū)共2000名高中學生,估計學校參與“創(chuàng)城”活動的人數(shù);

(2)在隨機抽查的100名高中學生中,隨機抽取1名學生,求恰好該生沒有參與“創(chuàng)城”活動的概率;

(3)在上表中從兩校沒有參與“創(chuàng)城”活動的同學中隨機抽取2人,求恰好兩校各有1人沒有參與“創(chuàng)城”活動的概率是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】針對“中學生追星問題”,某校團委對“學生性別和中學生追星是否有關(guān)”作了一次調(diào)查,其中女生人數(shù)是男生人數(shù)的,男生追星的人數(shù)占男生人數(shù)的,女生追星的人數(shù)占女生人數(shù)的.若有的把握認為是否追星和性別有關(guān),則男生至少有( )

參考數(shù)據(jù)及公式如下:

A. 12B. 11C. 10D. 18

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】把一系列向量按次序排成一排,稱之為向量列,記作,向量列滿足:

1)求數(shù)列的通項公式;

2)設(shè)表示向量間的夾角,軸正方向的夾角,若,求.

3)設(shè),問數(shù)列中是否存在最小項?若存在,求出最小項,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,底面是平行四邊形,在平面上的射影為,且上,且 ,的中點,四面體的體積為

(Ⅰ)求異面直線所成的角余弦值;

(Ⅱ)求點到平面的距離;

(Ⅲ)若點是棱上一點,且,求的值.

查看答案和解析>>

同步練習冊答案