函數(shù)處分別取得最大值和最小值,且對于任意
A.函數(shù)一定是周期為4的偶函數(shù)
B.函數(shù)一定是周期為2的奇函數(shù)
C.函數(shù)一定是周期為4的奇函數(shù)
D.函數(shù)一定是周期為2的偶函數(shù)
A
由題意知f(x)在[-1,1]上是增函數(shù),并且f(1)和f(-1)分別為函數(shù)f(x)的最大值和最小值,因而,周期T=4,并且圖像關(guān)于原點對稱,因而f(x)是周期為4的奇函數(shù),所以并且x=-1和x=1是函數(shù)f(x)的對稱軸,因而函數(shù)一定是周期為4的偶函數(shù).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)的圖象是曲線C,直線與曲線
C相切于點(1,3).
(1)求函數(shù)的解析式;
(2)求函數(shù)的遞增區(qū)間;
(3)求函數(shù)上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=x+4x+3,g(x)為一次函數(shù),若f(g(x))=x+10x+24,求g(x)
的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù),滿足,且,.則=.(   )
A.7B.15C.22D.28

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)
某工廠去年的某產(chǎn)品的年銷售量為100萬只,每只產(chǎn)品的銷售價為10元,每只產(chǎn)品固定成本為8元.今年,工廠第一次投入100萬元(科技成本),并計劃以后每年比上一年多投入100萬元(科技成本),預(yù)計銷售量從今年開始每年比上一年增加10萬只,第n次投入后,每只產(chǎn)品的固定成本為且n≥0),若產(chǎn)品銷售價保持不變,第n次投入后的年利潤為萬元.
(Ⅰ)求出的表達(dá)式;
(Ⅱ)若今年是第1年,問第幾年年利潤最高?最高利潤為多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若函數(shù)等于
A.0B.1C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)f(x)=|lgx|,若0<a<b,且f(a)=f(b),則2a+b的取值范圍是(  )
A.(2 ,+∞) B.[2 ,+∞)
C.(3,+∞)D.[3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

,則______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)= (    )
A.B.eC.D.

查看答案和解析>>

同步練習(xí)冊答案