設(shè)函數(shù)f(x)=(1+x)2-2ln(1+x)
(1)若關(guān)于x的不等式f(x)-m≥0在[0,e-1]有實(shí)數(shù)解,求實(shí)數(shù)m的取值范圍;
(2)設(shè)g(x)=f(x)-x2-1,若關(guān)于x的方程g(x)=p至少有一個(gè)解,求p的最小值.
(3)證明不等式:ln(x+1)<1+++…+(n∈N*)
解:(1)依題意得 ,而函數(shù)的定義域?yàn)?IMG style="vertical-align:middle" SRC="http://thumb.zyjl.cn/pic7/pages/60R0/0107/0022/fe43951d14aabccc4b526ac0e056993b/C/Image138.gif" width=66 HEIGHT=21> ∴在上為減函數(shù),在上為增函數(shù),則在上為增函數(shù)
即實(shí)數(shù)m的取值范圍為 (2) 則 顯然,函數(shù)在上為減函數(shù),在上為增函數(shù) 則函數(shù)的最小值為 所以,要使方程至少有一個(gè)解,則,即p的最小值為0 (3)由(2)可知:在上恒成立 所以,當(dāng)且僅當(dāng)x=0時(shí)等號(hào)成立 令,則代入上面不等式得: 即,即 所以,,,,…, 將以上n個(gè)等式相加即可得到:
|
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)函數(shù)f(x)=(1-2x3)4,則f′(1)等于 ( )
A.0 B.-1
C.-24 D.24
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014屆寧夏高二下學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
設(shè)函數(shù)f(x)=(1+x)2-2ln (1+x).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若關(guān)于x的方程f(x)=x2+x+a在[0,2]上恰有兩個(gè)相異實(shí)根,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015屆遼寧盤(pán)錦市高一第一次階段考試數(shù)學(xué)試卷(解析版) 題型:解答題
(12分)設(shè)函數(shù)f(x)=.
(1)求f(x)的定義域;(2)判斷f(x)的奇偶性;(3)求證:f+f(x)=0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:新課標(biāo)高三數(shù)學(xué)二項(xiàng)式定理及應(yīng)用專項(xiàng)訓(xùn)練(河北) 題型:填空題
設(shè)函數(shù)f(x)=(1-2x)10,則導(dǎo)函數(shù)f′(x)的展開(kāi)式x2項(xiàng)的系數(shù)為_(kāi)_______
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)函數(shù)f(x)=(1+x)2-2ln (1+x).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若關(guān)于x的方程f(x)=x2+x+a在[0,2]上恰有兩個(gè)相異實(shí)根,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com