函數(shù)f(x)的定義域為A,若x1,x2∈A且f(x1)=f(x2)時總有x1=x2,則稱f(x)為單函數(shù).例如,函數(shù)f(x)=2x+1(x∈R)是單函數(shù).下列命題:
①函數(shù)f(x)=x2(x∈R)是單函數(shù);
②若f(x)為單函數(shù),x1,x2∈A且x1≠x2,則f(x1)≠f(x2);
③若f:A→B為單函數(shù),則對于任意b∈B,它至多有一個原象;
④函數(shù)f(x)在某區(qū)間上具有單調(diào)性,則f(x)一定是單函數(shù).
其中的真命題是 .(寫出所有真命題的編號)
【答案】分析:根據(jù)單函數(shù)的定義f(x1)=f(x2)時總有x1=x2,可知函數(shù)f(x)則對于任意b∈B,它至多有一個原象,而①④f(-1)=f(1),顯然-1≠1,可知它不是單函數(shù),②③都是,可得結(jié)果.
解答:解:∵,若x1,x2∈A,且f(x1)=f(x2)時總有x1=x2,則稱f(x)為單函數(shù)
∴①函數(shù)f(x)=x2不是單函數(shù),∵f(-1)=f(1),顯然-1≠1,∴函數(shù)f(x)=x2(x∈R)不是單函數(shù);
②∵函數(shù)f(x)=2x(x∈R)是增函數(shù),∴f(x1)=f(x2)時總有x1=x2,即②正確;
③∵f(x)為單函數(shù),對于任意b∈B,
若?x1≠x2,使得f(x1)=f(x2)=b,
則x1=x2,與x1≠x2矛盾
∴③正確;
④例如①函數(shù)f(x)=x2在(0,+∞)上是增函數(shù),而它不是單函數(shù);故④不正確.
故答案為:②③.
點評:此題是個基礎(chǔ)題.考查學生分析解決問題的能力,以及知識方法的遷移能力.