【題目】費馬點是指三角形內(nèi)到三角形三個頂點距離之和最小的點。當(dāng)三角形三個內(nèi)角均小于時,費馬點與三個頂點連線正好三等分費馬點所在的周角,即該點所對的三角形三邊的張角相等均為。根據(jù)以上性質(zhì),函數(shù)的最小值為__________.
【答案】
【解析】
函數(shù)表示的是點(x,y)到點C(1,0)的距離與到點B(-1,0),到A(0,2)的距離之和,連接這三個點構(gòu)成了三角形ABC,由角DOB為,角DOC為,OD=,OC=,OA=,距離之和為:2OC+OA,求和即可.
根據(jù)題意畫出圖像,
函數(shù)表示的是點(x,y)到點C(1,0)的距離與到點B(-1,0),到A(0,2)的距離之和,設(shè)三角形這個等腰三角形的費馬點在高線AD上,設(shè)為O點即費馬點,連接OB,OC,則角DOB為,角DOC為,B(-1,0)C(1,0),A(0,2),OD=,OC=,OA=,距離之和為:2OC+OA=+=2+.
故答案為:.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】經(jīng)觀測,某公路段在某時段內(nèi)的車流量(千輛/小時)與汽車的平均速度(千米/小時)之間有函數(shù)關(guān)系:.
(1)在該時段內(nèi),當(dāng)汽車的平均速度為多少時車流量最大?最大車流量為多少?(精確到0.01)
(2)為保證在該時段內(nèi)車流量至少為10千輛/小時,則汽車的平均速度應(yīng)控制在什么范圍內(nèi)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知圓C經(jīng)過,,()三點,M是線段上的動點,,是過點且互相垂直的兩條直線,其中交y軸于點E,交圓C于P、Q兩點.
(1)若,求直線的方程;
(2)若是使恒成立的最小正整數(shù)
①求的值; ②求三角形的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),(其中)的圖象與x軸的交點中,相鄰兩個交點之間的距離為,且圖象上一個最低點為.
(Ⅰ)求的解析式;
(Ⅱ)當(dāng),求的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)在點處的切線方程;
(2)若存在,對任意,使得恒成立,求實數(shù)的取值范圍;
(3)已知函數(shù)區(qū)間上的最小值為1,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】焦點在x軸上的橢圓C:經(jīng)過點,橢圓C的離心率為.,是橢圓的左、右焦點,P為橢圓上任意點.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若點M為的中點(O為坐標(biāo)原點),過M且平行于OP的直線l交橢圓C于A,B兩點,是否存在實數(shù),使得;若存在,請求出的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知空間四邊形ABCD,∠BAC=,AB=AC=2,BD=CD=6,且平面ABC⊥平面BCD,則空間四邊形ABCD的外接球的表面積為( )
A. 60π B. 36π C. 24π D. 12π
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】藥材人工種植技術(shù)具有養(yǎng)殖密度高、經(jīng)濟效益好的特點.研究表明:人工種植藥材時,某種藥材在一定的條件下,每株藥材的年平均生長量單位:千克是每平方米種植株數(shù)x的函數(shù).當(dāng)x不超過4時,v的值為2;當(dāng)時,v是x的一次函數(shù),其中當(dāng)x為10時,v的值為4;當(dāng)x為20時,v的值為0.
當(dāng)時,求函數(shù)v關(guān)于x的函數(shù)表達式;
當(dāng)每平方米種植株數(shù)x為何值時,每平方米藥材的年生長總量單位:千克取得最大值?并求出這個最大值.年生長總量年平均生長量種植株數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】袋子中有四個小球,分別寫有“文、明、中、國”四個字,有放回地從中任取一個小球,直到“中”“國”兩個字都取到就停止,用隨機模擬的方法估計恰好在第三次停止的概率.利用電腦隨機產(chǎn)生0到3之間取整數(shù)值的隨機數(shù),分別用0,1,2,3代表“文、明、中、國”這四個字,以每三個隨機數(shù)為一組,表示取球三次的結(jié)果,經(jīng)隨機模擬產(chǎn)生了以下18組隨機數(shù):
232 321 230 023 123 021 132 220 001
231 130 133 231 013 320 122 103 233
由此可以估計,恰好第三次就停止的概率為( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com