已知a>0,b>0,且a+b=1,求證:
4
a
+
1
b
≥9.
考點(diǎn):基本不等式
專題:證明題,不等式的解法及應(yīng)用
分析:由a+b=1可知,得到
4
a
+
1
b
=
4(a+b)
a
+
a+b
b
,再利用基本不等式證明即可.
解答: 證明:由于a>0,b>0,且a+b=1,
4
a
+
1
b
=
4(a+b)
a
+
a+b
b
=5+
4b
a
+
a
b
≥5+2
4b
a
a
b
=9,
當(dāng)且僅當(dāng)
4b
a
=
a
b
即a=
2
3
,b=
1
3
時(shí),等號(hào)成立,
所以
4
a
+
1
b
≥9.
點(diǎn)評(píng):此題主要考查不等式的證明問題,其中涉及到基本不等式的應(yīng)用,注意等號(hào)成立的條件,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)學(xué)歸納法證明“1+a+a2+…+an=
1-an+1
1-a
(a≠1,n∈N*)”時(shí),驗(yàn)證當(dāng)n=1時(shí),等式的左邊為( 。
A、1
B、1-a
C、1+a
D、1-a2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

當(dāng)x>1時(shí),試比較x+lnx與e2x的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b,c是非零實(shí)數(shù),且a2+b2+c2=1.
(1)證明:
1
a2
+
4
b2
+
9
c2
≥36

(2)若不等式
1
a2
+
4
b2
+
9
c2
≥|m|+|m-2|
對(duì)一切a,b,c恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

人壽保險(xiǎn)很重視某一年齡段投保人的死亡率.假設(shè)每個(gè)投保人能活到65歲的概率為0.6,能活到75歲的概率為0.2,問:
(1)現(xiàn)有一位65歲的投保人,求他能活到75歲的概率;
(2)現(xiàn)有3名恰好65歲的投保人,每人投保6萬元,若活不到75歲,則每位將獲得8萬元賠償(不考慮其它因素),求保險(xiǎn)公司獲得凈收益X的分布列及期望(凈收入=收入-賠償).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的各項(xiàng)都是正數(shù),且對(duì)任意n∈N*都有a13+a23+a33+…+an3=Sn2+2Sn,其中Sn為數(shù)列{an}的前n項(xiàng)和.
(Ⅰ) 求a1,a2;
(Ⅱ) 求數(shù)列{an}的通項(xiàng)公式;
(Ⅲ)設(shè)bn=3n+(-1)n-1λ•2an,對(duì)任意的n∈N*,都有bn+1>bn恒成立,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直三棱柱ABC-A1B1C1(側(cè)棱和底面垂直的棱柱)中,平面A1BC⊥側(cè)面A1ABB1,AB=BC=AA1=3,線段AC、A1B上分別有一點(diǎn)E、F且滿足2AE=EC,2BF=FA1
(1)求證:AB⊥BC;
(2)求點(diǎn)E到直線A1B的距離;
(3)求二面角F-BE-C的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解不等式:
(1)x2-2x-3>0             
(2)2x2-x-1<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)p:函數(shù)y=(a-1)x+1在x∈(-∞,+∞)內(nèi)單調(diào)遞減;q:曲線y=x2+ax+1與x軸交于不同的兩點(diǎn).
(1)若p為真且q為真,求a的取值范圍;
(2)若p與q中一個(gè)為真一個(gè)為假,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案