【題目】已知拋物線的焦點(diǎn)為F,經(jīng)過(guò)點(diǎn)F的直線與拋物線C交于不同的兩點(diǎn)A,B,的最小值為4.
(1)求拋物線C的方程;
(2)已知P,Q是拋物線C上不同的兩點(diǎn),若直線恰好垂直平分線段PQ,求實(shí)數(shù)k 的取值范圍.
【答案】(1)(2)
【解析】
(1)設(shè),,過(guò)焦點(diǎn)的直線方程,代入拋物線方程,用焦半徑公式表示出焦點(diǎn)弦長(zhǎng)表示為的函數(shù)后可得最小值,由最小值為4可得;
(2)由垂直可設(shè)直線方程為,代入拋物線方程有,由韋達(dá)定理求出弦的中點(diǎn)坐標(biāo),代入直線方程,得的關(guān)系,再代入可求得的范圍.
解:(1)設(shè)過(guò)焦點(diǎn)的直線與拋物線分別交于點(diǎn),,
與拋物線方程聯(lián)立得,則,
,等號(hào)成立時(shí),,
即,故拋物線;
(2)由題知,故可設(shè)直線方程為,
與拋物線的方程聯(lián)立得,
則即①,
又,
設(shè)中點(diǎn)為,則,
,
又點(diǎn)在直線上,故,
則,
代入①式得,即,
解得.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,正三角形的邊長(zhǎng)為2, 分別在三邊和上, 為的中點(diǎn), .
(Ⅰ)當(dāng)時(shí),求的大;
(Ⅱ)求的面積的最小值及使得取最小值時(shí)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】半正多面體(semiregular solid) 亦稱“阿基米德多面體”,是由邊數(shù)不全相同的正多邊形為面的多面體,體現(xiàn)了數(shù)學(xué)的對(duì)稱美.二十四等邊體就是一種半正多面體,是由正方體切截而成的,它由八個(gè)正三角形和六個(gè)正方形為面的半正多面體.如圖所示,圖中網(wǎng)格是邊長(zhǎng)為1的正方形,粗線部分是某二十四等邊體的三視圖,則該幾何體的體積為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于統(tǒng)計(jì)數(shù)據(jù)的分析,有以下幾個(gè)結(jié)論,其中正確的個(gè)數(shù)為( )
①利用殘差進(jìn)行回歸分析時(shí),若殘差點(diǎn)比較均勻地落在寬度較窄的水平帶狀區(qū)域內(nèi),則說(shuō)明線性回歸模型的擬合精度較高;
②將一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)都減去同一個(gè)數(shù)后,期望與方差均沒(méi)有變化;
③調(diào)查劇院中觀眾觀后感時(shí),從50排(每排人數(shù)相同)中任意抽取一排的人進(jìn)行調(diào)查是分層抽樣法;
④已知隨機(jī)變量服從正態(tài)分布,且,則.
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在平面直角坐標(biāo)系中,中心在原點(diǎn),焦點(diǎn)在y軸上的橢圓C與橢圓的離心率相同,且橢圓C短軸的頂點(diǎn)與橢圓E長(zhǎng)軸的頂點(diǎn)重合.
(1)求橢圓C的方程;
(2)若直線l與橢圓E有且僅有一個(gè)公共點(diǎn),且與橢圓C交于不同兩點(diǎn)A,B,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《孫子算經(jīng)》是中國(guó)古代重要的數(shù)學(xué)著作,書中有一問(wèn)題:“今有方物一束,外周一匝有三十二枚,問(wèn)積幾何?”,該著作中提出了一種解決此問(wèn)題的方法:“重置二位,左位減八,余加右位,至盡虛減一,即得.”通過(guò)對(duì)該題的研究發(fā)現(xiàn),若一束方物外周一匝的枚數(shù)是8的整數(shù)倍時(shí),均可采用此方法求解,如圖是解決這類問(wèn)題的程序框圖,若輸入,則輸出的結(jié)果為( )
A.80B.47C.79D.48
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),的最大值為.
(Ⅰ)求實(shí)數(shù)的值;
(Ⅱ)當(dāng)時(shí),討論函數(shù)的單調(diào)性;
(Ⅲ)當(dāng)時(shí),令,是否存在區(qū)間.使得函數(shù)在區(qū)間上的值域?yàn)?/span>若存在,求實(shí)數(shù)的取值范圍;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱柱ABCD-中,地面ABCD為直角梯形,AB∥CD,AB⊥BC,平面ABCD⊥平面AB,∠BA=60°,AB=A=2BC=2CD=2
(1)求證:BC⊥A;
(2)求二面角D-A-B的余弦值;
(3)在線段D上是否存在點(diǎn)M,使得CM∥平面DA?若存在,求的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】中國(guó)古代數(shù)學(xué)名著《九章算術(shù)》中有這樣一個(gè)問(wèn)題:今有牛、馬、羊食人苗,苗主責(zé)之粟五斗,羊主曰:“我羊食半馬、“馬主曰:“我馬食半牛,”今欲衰償之,問(wèn)各出幾何?此問(wèn)題的譯文是:今有牛、馬、羊吃了別人的禾苗,禾苗主人要求賠償5斗粟、羊主人說(shuō):“我羊所吃的禾苗只有馬的一半,”馬主人說(shuō):“我馬所吃的禾苗只有牛的一半,“打算按此比例償還,他們各應(yīng)償還多少?該問(wèn)題中,1斗為10升,則馬主人應(yīng)償還( )升粟?
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com