【題目】已知數(shù)列{an}的前n項和為Sn , 對一切正整數(shù)n,點Pn(n,Sn)都在函數(shù)f(x)=x2+2x的圖象上,記an與an+1的等差中項為kn .
(1)求數(shù)列{an}的通項公式;
(2)若 ,求數(shù)列{bn}的前n項和Tn;
(3)設集合 ,等差數(shù)列{cn}的任意一項cn∈A∩B,其中c1是A∩B中的最小數(shù),且110<c10<115,求{cn}的通項公式.
【答案】
(1)
解:∵點Pn(n,Sn)都在函數(shù)f(x)=x2+2x的圖象上,∴ ,
當n≥2時,an=Sn﹣Sn﹣1=2n+1.
當n=1時,a1=S1=3滿足上式,
所以數(shù)列{an}的通項公式為an=2n+1.
(2)
解:∵kn為an與an+1的等差中項
∴
∴ .
∴ ①
由①×4,得 ②
①﹣②得: =
∴
(3)
解:∵
∴A∩B=B
∵cn∈A∩B,c1是A∩B中的最小數(shù),∴c1=6.
∵{cn}是公差為4的倍數(shù)的等差數(shù)列,∴ .
又∵110<c10<115,∴ ,解得m=27.
所以c10=114,
設等差數(shù)列的公差為d,則 ,
∴cn=6+(n+1)×12=12n﹣6,
∴cn=12n﹣6.
【解析】(1)根據(jù)點Pn(n,Sn)都在函數(shù)f(x)=x2+2x的圖象上,可得 ,再寫一式,兩式相減,即可求得數(shù)列{an}的通項公式;(2)先確定數(shù)列的通項,再利用錯位相減法求數(shù)列的和;(3)先確定A∩B=B,再確定{cn}是公差為4的倍數(shù)的等差數(shù)列,利用110<c10<115,可得c10=114,由此可得{cn}的通項公式.
【考點精析】解答此題的關鍵在于理解數(shù)列的前n項和的相關知識,掌握數(shù)列{an}的前n項和sn與通項an的關系,以及對等差數(shù)列的性質的理解,了解在等差數(shù)列{an}中,從第2項起,每一項是它相鄰二項的等差中項;相隔等距離的項組成的數(shù)列是等差數(shù)列.
科目:高中數(shù)學 來源: 題型:
【題目】[選修4—5:不等式選講]
已知函數(shù)f(x)=–x2+ax+4,g(x)=│x+1│+│x–1│.
(1)當a=1時,求不等式f(x)≥g(x)的解集;
(2)若不等式f(x)≥g(x)的解集包含[–1,1],求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)=2x﹣cosx,{an}是公差為 的等差數(shù)列,f(a1)+f(a2)+…+f(a5)=5π,則[f(a3)]2﹣a1a5= .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】海水養(yǎng)殖場進行某水產品的新、舊網箱養(yǎng)殖方法的產量對比,收獲時各隨機抽取了100 個網箱,測量各箱水產品的產量(單位:kg).其頻率分布直方圖如下:
(1)設兩種養(yǎng)殖方法的箱產量相互獨立,記A表示事件:“舊養(yǎng)殖法的箱產量低于50kg,新養(yǎng)殖法的箱產量不低于50kg”,估計A的概率;
(2)填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有99%的把握認為箱產量與養(yǎng)殖方法有關:
箱產量<50kg | 箱產量≥50kg | |
舊養(yǎng)殖法 | ||
新養(yǎng)殖法 |
(3)根據(jù)箱產量的頻率分布直方圖,求新養(yǎng)殖法箱產量的中位數(shù)的估計值(精確到0.01).
附:,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】△ABC的三個內角A,B,C所對的邊分別為a,b,c,向量 , ,且 .
(1)求A的大;
(2)現(xiàn)在給出下列三個條件:①a=1;② ;③B=45°,試從中選擇兩個條件以確定△ABC,求出所確定的△ABC的面積.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com