某單位有老年人,中年人,青年人依次為25人,35人,40人,用分層抽樣的方法抽取40人,則老、中、青的人數(shù)依次為
 
考點:分層抽樣方法
專題:概率與統(tǒng)計
分析:根據(jù)分層抽樣的定義,建立比例關(guān)系即可得到結(jié)論.
解答: 解:老年人,中年人,青年人依次為25人,35人,40人,
則對應(yīng)的人數(shù)比為25:35:40=5:7:8,
分層抽樣的方法抽取40人,則老、中、青的人數(shù)依次為
5
5+7+8
×40=10
,
7
5+7+8
×40=14
,40-10-14=16,
故答案為:10,14,16
點評:本題主要考查分層抽樣的應(yīng)用,根據(jù)條件建立比例公式是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

根據(jù)下列條件,求相應(yīng)的等差數(shù)列{an}的有關(guān)未知數(shù):
(1)a1=20,an=54,Sn=999,求d及n;
(2)d=2,n=15,an=-10,求a1及Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)平面上,O為原點,M為動點,|
OM
|=
5
,
ON
=
2
5
5
OM
.過點M作MM1⊥y軸于M1,過N作NN1⊥x軸于點N1,
OT
=
M1M
+
N1N
.記點T的軌跡為曲線C,點A(5,0)、B(1,0),過點A作直線l交曲線C于兩個不同的點P、Q(點Q在A與P之間).
(1)求曲線C的方程;
(2)證明不存在直線l,使得|BP|=|BQ|;
(3)過點P作y軸的平行線與曲線C的另一交點為S,若
AP
=t
AQ
,證明
SB
=t
BQ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,且對任意正整數(shù)n,有Sn,
a
2(a-1)
an
,n(其中a≠0,a≠1)成等差數(shù)列,令bn=(an+1)lg(an+1).
(1)求數(shù)列{an}的通項公式an(用a,n表示);
(2)當(dāng)a=
8
9
時,數(shù)列{bn}是否存在最小項,若存在,請求出第幾項最小;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

四棱錐P-ABCD中,底面ABCD為平行四邊形,∠ABC=45°,AB=2,BC=2
2
,PA=PB=PC=
3
,點O是BC中點,點M是PD的中點.

(Ⅰ)求證:PB∥平面AMC;
(Ⅱ)證明:PO⊥平面ABCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

把正整數(shù)按一定的規(guī)則排成了如圖所示的三角形數(shù)表.設(shè)aij(i,j∈N+)是位于這個三角形數(shù)表中從上往下數(shù)第i行、從左往右數(shù)第j個數(shù),如a52=11.則a87=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一輛汽車在筆直的公路上變速行駛,設(shè)汽車在時刻t的速度為v(t)=-t2+4,(0≤t≤3)(t的單位:h,v的單位:km/h)則這輛車行駛的最大位移是
 
km.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

方程(
1
2
)x=3-x2
的實數(shù)解的個數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

觀察等式 
  
由以上等式推測到一個一般的結(jié)論:對于n∈N*,C
 
1
4n+1
+C
 
5
4n+1
+C
 
9
4n+1
+…+C
 
4n+1
4n+1
=
 

查看答案和解析>>

同步練習(xí)冊答案