【題目】設矩形ABCD,以A、B為左右焦點,并且過C、D兩點的橢圓和雙曲線的離心率之積為(
A.
B.2
C.1
D.條件不夠,不能確定

【答案】C
【解析】解:根據(jù)題意,設A的坐標(﹣m,0),D的坐標為(﹣m,n),則B(m,0),D(m,n);

則|DB|= ,

在橢圓中,c=m,2a=|AD|+|BD|=n+ ,

其離心率e1= = ,

在雙曲線中,c=m,2a=|DB|﹣|AD|= ﹣n,

其離心率e2= = ,

橢圓和雙曲線的離心率之積e1×e2= × = =1;

故選:C.

根據(jù)題意,設出A、B、C、D的坐標,計算可得|BD|的值,結(jié)合橢圓、雙曲線的定義計算可得橢圓的離心率e1和雙曲線的離心率e2,將橢圓和雙曲線的離心率相乘即可得答案.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】田忌和齊王賽馬是歷史上有名的故事,設齊王的三匹馬分別為A1,A2,A3;田忌的三匹馬分別為B1,B2,B3;三匹馬各比賽一次,勝兩場者獲勝,雙方均不知對方的馬出場順序.

(1)若這六匹馬比賽優(yōu)、劣程度可以用不等式表示:A1>B1>A2>B2>A3>B3,則田忌獲勝的概率是多大?

(2)若這六匹馬比賽優(yōu)、劣程度可以用不等式表示:A1>B1>A2>B2>B3>A3,則田忌獲勝的概率是多大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐的底面是直角梯形, ,

,點在線段上,且, , 平面.

1)求證:平面平面;

2)當四棱錐的體積最大時,求四棱錐的表面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,AB//CD,且

(1)證明:平面PAB⊥平面PAD;

(2)若PA=PD=AB=DC, ,且四棱錐P-ABCD的體積為,求該四棱錐的側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線C1 ,(t為參數(shù))曲線C2 +y2=4.
(1)在同一平面直角坐標系中,將曲線C2上的點按坐標變換y′=yx,后得到曲線C′.求曲線C′的普通方程,并寫出它的參數(shù)方程;
(2)若C1上的點P對應的參數(shù)為t= ,Q為C′上的動點,求PQ中點M到直線C3 (t為參數(shù))的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) ,
(Ⅰ)當a=2時,求f(x)在x∈[1,e2]時的最值(參考數(shù)據(jù):e2≈7.4);
(Ⅱ)若x∈(0,+∞),有f(x)+g(x)≤0恒成立,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】經(jīng)市場調(diào)查,某商品在過去天內(nèi)的日銷售量(單位:件)和銷售價格(單位:元/件)均為時間的函數(shù),日銷售量近似地滿足,銷售價格近似滿足于,

(1)試寫出該種商品的日銷售額與時間的函數(shù)關(guān)系式.

(2)求該種商品的日銷售額的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在一次水下考古活動中,某一潛水員需潛水50米到水底進行考古作業(yè),其用氧量包含以下三個方面:

①下潛平均速度為米/分鐘,每分鐘的用氧量為升;

②水底作業(yè)時間范圍是最少10分鐘最多20分鐘,每分鐘用氧量為0.3升;

③返回水面時,平均速度為米/分鐘,每分鐘用氧量為0.32升;潛水員在此次考古活動中的總用氧量為升.

(1)如果水底作業(yè)時間是10分鐘,將表示為的函數(shù);

(2)若,水底作業(yè)時間為20分鐘,求總用氧量的取值范圍;

(3)若潛水員攜帶氧氣13.5升,請問潛水員最多在水下多少分鐘(結(jié)果取整數(shù))?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xOy中,圓C的參數(shù)方程 (φ為參數(shù)),以O為極點,x軸的非負半軸為極軸建立極坐標系.
(1)求圓C的極坐標方程;
(2)直線l的極坐標方程是2ρsin(θ+ )=3 ,射線OM:θ= 與圓C的交點為O、P,與直線l的交點為Q,求線段PQ的長.

查看答案和解析>>

同步練習冊答案