(2012•成都模擬)某廠擬生產(chǎn)甲、乙兩種適銷(xiāo)產(chǎn)品,每件銷(xiāo)售收入分別為0.3萬(wàn)元、0.2萬(wàn)元.甲、乙兩種產(chǎn)品都需在A、B兩種設(shè)備上加工,在每臺(tái)A、B設(shè)備上加工1件甲產(chǎn)品設(shè)備所需工時(shí)分別為1h、2h,加工1件乙產(chǎn)品設(shè)備所需工時(shí)分別為2h、1h,A、B兩種設(shè)備每月有效使用臺(tái)時(shí)數(shù)分別為400h、500h.則月銷(xiāo)售收入的最大值為( 。
分析:先設(shè)甲、乙兩種產(chǎn)品月產(chǎn)量分別為x、y件,寫(xiě)出約束條件、目標(biāo)函數(shù),欲求生產(chǎn)收入最大值,即求可行域中的最優(yōu)解,將目標(biāo)函數(shù)看成是一條直線,分析目標(biāo)函數(shù)Z與直線截距的關(guān)系,進(jìn)而求出最優(yōu)解.
解答:解:設(shè)甲、乙兩種產(chǎn)品月的產(chǎn)量分別為x,y件,
約束條件是
x+2y≤400
2x+y≤500
x≥0
y≥0

目標(biāo)函數(shù)是z=0.3x+0.2y
由約束條件畫(huà)出可行域,如圖所示的陰影部分
由z=0.3x+0.2y可得5z為直線z=0.3x+0.2y在y軸上的截距,截距最大時(shí)z最大.
結(jié)合圖象可知,z=0.3x+0.2y在A處取得最大值
2x+y=500
x+2y=400
可得A(200,100),此時(shí)z=80萬(wàn)
故選C
點(diǎn)評(píng):在解決線性規(guī)劃的應(yīng)用題時(shí),其步驟為:①分析題目中相關(guān)量的關(guān)系,列出不等式組,即約束條件②由約束條件畫(huà)出可行域③分析目標(biāo)函數(shù)Z與直線截距之間的關(guān)系④使用平移直線法求出最優(yōu)解⑤還原到現(xiàn)實(shí)問(wèn)題中.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•成都模擬)設(shè)函數(shù)f(x)=-
13
x3
+2ax2-3a2x+b(常數(shù)a,b滿(mǎn)足0<a<1,b∈R).
(1)求函數(shù)f(x)的單調(diào)區(qū)間和極值;
(2)若對(duì)任意的x∈[a+1,a+2],不等式|f'(x)|≤a恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•成都模擬)定義:若平面點(diǎn)集A中的任一個(gè)點(diǎn)(x0,y0),總存在正實(shí)數(shù)r,使得集合B={(x,y)|
(x-x0)2+(y-y0)2
<r}⊆A
,則稱(chēng)A為一個(gè)開(kāi)集,給出下列集合:
①{(x,y)|x2+y2=1};      
②{(x,y|x+y+2>0)};
③{(x,y)||x+y|≤6};     
{(x,y)|0<x2+(y-
2
)
2
<1}

其中是開(kāi)集的是
②④
②④
.(請(qǐng)寫(xiě)出所有符合條件的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•成都模擬)向量
OA
=(2,0),
OB
=(2+2cosθ,2
3
+2sinθ)
,則向量
OA
OB
的夾角的范圍是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•成都模擬)已知函數(shù)f(x)=
3
sinx,g(x)=cos(π+x)
,直線x=a與f(x),g(x)的圖象分別交于M,N兩點(diǎn),則|MN|的最大值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•成都模擬)在銳角△ABC中,已知5
.
AC
.
BC
=4|
.
AC
|•|
.
BC
|,設(shè)
m
=(sinA,sinB),
n
=(cosB,-cosA)且
m
n
=
1
5

求:(1)sin(A+B)的值;(2)tanA的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案