【題目】足球是世界普及率最高的運動,我國大力發(fā)展校園足球.為了解本地區(qū)足球特色學校的發(fā)展狀況,社會調查小組得到如下統(tǒng)計數據:
年份x | 2014 | 2015 | 2016 | 2017 | 2018 |
足球特色學校y(百個) | 0.30 | 0.60 | 1.00 | 1.40 | 1.70 |
(1)根據上表數據,計算y與x的相關系數r,并說明y與x的線性相關性強弱.
(已知:,則認為y與x線性相關性很強;,則認為y與x線性相關性一般;,則認為y與x線性相關性較):
(2)求y關于x的線性回歸方程,并預測A地區(qū)2020年足球特色學校的個數(精確到個).
參考公式和數據:,
,
.
科目:高中數學 來源: 題型:
【題目】十九大以來,某貧困地區(qū)扶貧辦積極貫徹落實國家精準扶貧的政策要求,帶領農村地區(qū)人民群眾脫貧奔小康,扶貧辦計劃為某農村地區(qū)購買農機機器,假設該種機器使用三年后即被淘汰.農機機器制造商對購買該機器的客戶推出了兩種銷售方案:
方案一:每臺機器售價7000元,三年內可免費保養(yǎng)2次,超過2次每次收取保養(yǎng)費200元;
方案二:每臺機器售價7050元,三年內可免費保養(yǎng)3次,超過3次每次收取保養(yǎng)費100元.
扶貧辦需要決策在購買機器時應該選取那種方案,為此搜集并整理了50臺這種機器在三年使用期內保養(yǎng)的次數,得下表:
保養(yǎng)次數 | 0 | 1 | 2 | 3 | 4 | 5 |
臺數 | 1 | 10 | 19 | 14 | 4 | 2 |
記表示1臺機器在三年使用期內的保養(yǎng)次數.
(1)用樣本估計總體的思想,求“不超過2”的概率;
(2)若表示1臺機器的售價和三年使用期內花費的費用總和(單位:元),求選用方案一時關于的函數解析式;
(3)按照兩種銷售方案,分別計算這50臺機器三年使用期內的總費用(總費用=售價+保養(yǎng)費),以每臺每年的平均費用作為決策依據,扶貧辦選擇那種銷售方案購買機器更合算?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設拋物線,滿足,過點作拋物線的切線,切點分別為.
(1)求證:直線與拋物線相切;
(2)若點坐標為,點在拋物線的準線上,求點的坐標;
(3)設點在直線上運動,直線是否恒過定點?若恒過定點,求出定點坐標;若不存在,請說明理由;
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知a∈R,函數f(x)=(-x2+ax)ex(x∈R).
(1)當a=2時,求函數f(x)的單調區(qū)間;
(2)若函數f(x)在(-1,1)上單調遞增,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】三棱柱中,為的中點,點在側棱上,平面
(1) 證明:是的中點;
(2) 設,四邊形為邊長為4正方形,四邊形為矩形,且異面直線與所成的角為,求該三棱柱的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為,過右焦點作兩條互相垂直的直線,分別交橢圓于和四點.設的中點為.
(1)求橢圓的方程;
(2)直線是否經過定點?若是,求出定點坐標;若否,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,四個點,,,中有3個點在橢圓:上.
(1)求橢圓的標準方程;
(2)過原點的直線與橢圓交于,兩點(,不是橢圓的頂點),點在橢圓上,且,直線與軸、軸分別交于、兩點,設直線,的斜率分別為,,證明:存在常數使得,并求出的值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com