設(shè)(
OB
)
=x(
OA
)
+y(
OC
)
,且A、B、C三點共線(該直線不過端點O),則x+y=
 
分析:利用向量共線的充要條件:
a
b
列出等式再利用向量減法法則將等式用
OA
OB
,
OC
表示;利用平面向量基本定理對應(yīng)的系數(shù)相等得到x+y.
解答:解:∵A、B、C三點共線,
∴存在一個實數(shù)λ,
AB
AC
(
OB
)
-(
OA
)
=λ((
OC
)
-(
OA
)
).
(
OB
)
=(1-λ)(
OA
)
(
OC
)

又∵(
OB
)
=x(
OA
)
+y(
OC
)

∴x+y=(1-λ)+λ=1.
故答案為1
點評:本題考查兩個
a
,
b
共線的充要條件是
a
b
(
b
0
)
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知
OA
=(2asin2x,a)
OB
=(-1,2
3
sinxcosx+1)
,O為坐標原點,a≠0,設(shè)f(x)=
OA
OB
+b
,b>a.
(I)若a>0,寫出函數(shù)y=f(x)的單調(diào)遞增區(qū)間;
(II)若函數(shù)y=f(x)的定義域為[
π
2
,π]
,值域為[2,5],求實數(shù)a與b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中,已知O為坐標原點,點A的坐標為(a,b),點B的坐標為(cosωx,sinωx),其中a2+b2≠0且ω>0.設(shè)f(x)=
OA
OB

(1)若a=
3
,b=1,ω=2,求方程f(x)=1在區(qū)間[0,2π]內(nèi)的解集;
(2)若點A是過點(-1,1)且法向量為
n
=(-1,1)
的直線l上的動點.當x∈R時,設(shè)函數(shù)f(x)的值域為集合M,不等式x2+mx<0的解集為集合P.若P⊆M恒成立,求實數(shù)m的最大值;
(3)根據(jù)本題條件我們可以知道,函數(shù)f(x)的性質(zhì)取決于變量a、b和ω的值.當x∈R時,試寫出一個條件,使得函數(shù)f(x)滿足“圖象關(guān)于點(
π
3
,0)
對稱,且在x=
π
6
處f(x)取得最小值”.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

三個城市襄陽、荊州、武漢分別位于A,B,C三點處(如右圖),且AB=AC=20
2
km,BC=40km.今計劃合建一個貨運中轉(zhuǎn)站,為同時方便三個城市,準備建在與B、C等距離的O點處,并修建道路OA,OB,OC.記修建的道路的總長度為ykm.
(Ⅰ)設(shè)OB=x(km),將y表示為x的函數(shù);
(Ⅱ)由(Ⅰ)中建立的函數(shù)關(guān)系,確定貨運中轉(zhuǎn)站的位置,使修建的道路的總長度最短.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年湖北省荊州中學高三(上)第一次質(zhì)量檢測數(shù)學試卷 (理科)(解析版) 題型:解答題

三個城市襄陽、荊州、武漢分別位于A,B,C三點處(如右圖),且km,BC=40km.今計劃合建一個貨運中轉(zhuǎn)站,為同時方便三個城市,準備建在與B、C等距離的O點處,并修建道路OA,OB,OC.記修建的道路的總長度為ykm.
(Ⅰ)設(shè)OB=x(km),將y表示為x的函數(shù);
(Ⅱ)由(Ⅰ)中建立的函數(shù)關(guān)系,確定貨運中轉(zhuǎn)站的位置,使修建的道路的總長度最短.

查看答案和解析>>

同步練習冊答案